Continuous Variable Quantum Photonics

Zachary Vernon

Photonics for Quantum Workshop January 24, 2019 Rochester, NY

Outline

- > Why (and what is) continuous variable (CV) quantum optics?
- > Integrated CV quantum photonics: progress to date
- > Nanophotonic squeezing
- > (Advertisement!) A bit about Xanadu

Background & Motivation

Encoding quantum information in continuous degrees of freedom like "intensity and phase" or field quadratures

Background & Motivation

CV quantum toolkit can implement universal quantum computation!

Thesis: interesting sampling problems make CV a powerful encoding for realistic & useful quantum technologies in the near term

Gaussian Boson Sampling

Gaussian

Boson sampling for molecular vibronic spectra

Joonsuk Huh*, Gian Giacomo Guerreschi, Borja Peropadre, Jarrod R. McClean and Alán Aspuru-Guzik*

PHYSICAL REVIEW LETTERS 121, 030503 (2018)

Using Gaussian Boson Sampling to Find Dense Subgraphs

Juan Miguel Arrazola^{*} and Thomas R. Bromley[†] Xanadu, 372 Richmond Street W, Toronto, Ontario M5V 1X6, Canada

(Received 5 April 2018; revised manuscript received 14 May 2018; published 19 July 2018)

Why integrate CV quantum devices?

- Passive phase stability
- Scalability
- Power efficiency
- Microresonators
- Ease of mode engineering

Deterministic generation of CV entanglement: two mode squeezing

CV operations on chip

nature photonics

LETTERS PUBLISHED ONLINE: 30 MARCH 2015 | DOI: 10.1038/NPHOTON.2015.42

Continuous-variable entanglement on a chip

Genta Masada^{1,2}, Kazunori Miyata¹, Alberto Politi³, Toshikazu Hashimoto⁴, Jeremy L. O'Brien⁵ and Akira Furusawa^{1*}

Quantum Sci. Technol. 3 (2018) 025003

https://doi.org/10.1088/2058-9565/aaa38f

Quantum Science and Technology

PAPER

A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers

Francesco Raffaelli[®], Giacomo Ferranti, Dylan H Mahler, Philip Sibson, Jake E Kennard, Alberto Santamato, Gary Sinclair, Damien Bonneau, Mark G Thompson and Jonathan CF Matthews[®] Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical & Electronic Engineering, University

Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical & Electronic Engineering, University of Bristol, BS8 1FD, United Kingdom

Integrated squeezing: existing work

Integrated photonic platform for quantum information with continuous variables

Francesco Lenzini^{1,2}, Jiri Janousek^{3,4}, Oliver Thearle^{3,4}, Matteo Villa¹, Ben Haylock¹, Sachin Kasture¹, Liang Cui⁵, Hoang-Phuong Phan^{6,7}, Dzung Viet Dao^{6,7}, Hidehiro Yonezawa⁸, Ping Koy Lam⁴, Elanor H. Huntington³, and Mirko Lobino^{1,6,*}

- Low confinement LiNb waveguides
- 2xPPLN squeezers integrated
- Entanglement and local oscillator mixing on chip
- 1.4dB squeezing at end

PHYSICAL REVIEW APPLIED 3, 044005 (2015)

On-Chip Optical Squeezing

Avik Dutt,^{1,*} Kevin Luke,¹ Sasikanth Manipatruni,² Alexander L. Gaeta,^{3,4} Paulo Nussenzveig,^{1,5} and Michal Lipson^{1,4} ¹School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, USA ²Exploratory Integrated Circuits, Intel Components Research, Intel Corporation, Hillsboro, Oregon 97124, USA ³School of Applied and Engineering Physics. Cornell University, Ithaca, New York 14853, USA ⁴Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA ⁵Instituto de Física, Universidade de São Paulo, P.O. Box 66318, 05315-970 São Paulo, Brazil (Received 20 April 2014; revised manuscript received 3 March 2015; published 13 April 2015)

- OPO above threshold in SiN microring resonator
- Intensity difference squeezing: bright twin beams
- 1.7dB measured
- First *nanophotonic* squeezing demonstration

Integrated squeezing: whatismissing?

Wish list for integrated squeezing platform & device

	Low confinement PPLN	SiN OPOs above threshold	
Nanophotonic system	X	\checkmark	
Quadrature squeezing	✓	X	
Photon counting compatible	 Image: A start of the start of	Х	
Single temporal mode	?	Х	

New! Nanophotonic quadrature squeezing

- Silicon nitride microring resonator (~100um radius, 800x1000nm cross section) with microheater
- Loaded Q ~ 200,000 overcoupled to 75% escape efficiency
- Pumped CW below threshold, 0-100mW
- Track SPM frequency shift by tuning laser
- Measure squeezing in composite signal/idler mode using bichromatic homodyne

XPN

 $H_{\rm NL} = -\hbar\Lambda(b_P b_P b_S^{\dagger} b_I^{\dagger} + \frac{1}{2}b_P^{\dagger} b_P b_P^{\dagger} b_P + 2b_P^{\dagger} b_P (b_S^{\dagger} b_S + b_I^{\dagger} b_I))$

New! Nanophotonic quadrature squeezing

Prepare phase-locked pump & bichromatic local oscillator

New! Nanophotonic quadrature squeezing

Photon number difference squeezing

- Same microring device as for quadrature squeezing
- Chopped CW pump to avoid detector saturation
- Measure photon statistics using photon number resolving transition-edge sensors (TES)
- Expect number difference variance suppressed (sub-Poissonian), limited by loss/noise

difference

$$V_{\Delta n} = (1 - \eta) n_{
m tot}$$

Variance of the Loss Mean signal+idler photo
per-pulse signal-idler number

Photon number difference squeezing

Integrated squeezing: whatismissing?

Wish list for integrated squeezing platform & device

	Low confinement PPLN	SiN OPOs above threshold	SFWM below threshold
Nanophotonic system	X	 Image: A start of the start of	\checkmark
Quadrature squeezing	✓	X	\checkmark
Photon counting compatible	 Image: A start of the start of	X	\checkmark
Single temporal mode	?	X	In progress - theory says yes!

Next steps: dual pump for degenerate squeezing

Scalable squeezed light source for continuous variable quantum sampling

Z. Vernon,¹,^{*} N. Quesada,¹ M. Liscidini,^{2,3} B. Morrison,¹ M. Menotti,¹ K. Tan,¹ and J.E. Sipe⁴

¹Xanadu, 372 Richmond St. W, Toronto, ON, M5V 1X6, Canada
 ²Dipartimento di Fisica, Università degli studi di Pavia, Via Bassi 6, 27100 Pavia, Italy
 ³Impact Centre, University of Toronto, 411-112 College St., Toronto, ON, M5G 1L6, Canada
 ⁴Department of Physics, University of Toronto, 60 St. George St., Toronto, ON, M5S 1A7, Canada
 (Dated: July 3, 2018)

arXiv: 1807.00044v1

About Xanadu

- ★ ~35 employees full time in Toronto (32 PhDs)
- ★ Teams focused on hardware, software, business, and applications (theory & algorithm development)
- ★ Cutting-edge photonics lab
- ★ Hardware: 11 full time —— (and growing!)

<u>NIST Collaborators</u> Sae Woo Nam Thomas Gerrits Adriana Lita

<u>ORNL</u> Raphael Pooser Matthew Collins Luke Helt Jonathan Lavoie Dylan Mahler Matteo Menotti Blair Morrison Nicolas Quesada Alain Repingon Reihaneh Shahrokhshahi Kang Tan Varun Vaidya Zachary Vernon John Sipe (adv) Marco Liscidini (adv)

About Xanadu

We are a *full-stack* quantum computing startup

STRAWBERRY FIELDS

Open-source software for photonic quantum computing

We're hiring -- contact zach@xanadu.ai

www.xanadu.ai

