

Photonic engineering of atomic sensors

Jennifer T. Choy

Department of Engineering Physics, University of Wisconsin - Madison

Photonics for Quantum 2 July 15, 2020

Outline

Atomic sensor example: Cold-atom accelerometer and gyroscope

Draper Laboratory

Contributors and funding support on presented work

<u>Chip-Scale Combinatorial Atomic Navigator</u> <u>development at Draper:</u>

- Dave Johnson (Program manager)
- Jen Choy (Technical director)
- Alex Gill
- Christine Wang
- Steve Byrnes
- Krish Kotru

Part of this work was supported by the Defense Advanced Research Projects Agency (DARPA), under the Chip-Scale Combinatorial Atomic Navigator (C-SCAN) program.

The views, opinions, and/or findings expressed are those of the author(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Team at UW-Madison:

- Xuting Yang
- Ricardo Vidrio
- Sarah Francis
- John (Jack) Doyle

Collaborators at UW-Madison

- Mikhail Kats
- Ray Wambold
- Thad Walker

Funding support from the Office of Naval Research (N00014-20-1-2598) and the Wisconsin Alumni Research Foundation

Concept of atom-based quantum sensing

Why useful:

- Transitions with high frequencies lead to high measurement resolution
- Strong interactions between atoms and physical quantities enable sensitive measurements
- Properties of well-isolated atoms, including their interactions with the environment, are stable over time
- Atoms of the same element and isotope are identical \rightarrow ideal measurement standards!

Essential atom-photon interactions for quantum measurements

Current and future applications of quantum sensing platforms

Precise and accurate time and frequency standards

Time/frequency distribution

Magnetometry with high sensitivity and spatial resolution

Communications

Classical vs quantum ways to measure inertial motion

Inertial sensors measure the displacement of some object ("proof mass") in response to acceleration or rotation

- Tethered mechanical proof mass
- Variability in manufacturing
- Sensor response can degrade with changing environment

- Frictionless, reproducible, identical proof masses
- Stable electron energy levels provide both sensitivity and stability
- Implementation challenges
 - Size and complexity of setups
 - Performance degrades under dynamic environments (data rate and physical constraints)

Proof masses (atom clouds) thrown towards each other at speed v

Case at rest

Proof masses (atom clouds) thrown towards each other at speed v

Case at rest

Case under acceleration

- Sensitivity scales with time-of-flight
- We use atom interferometry to measure displacements

Measuring displacements: Atom Interferometry

We will use laser pulses to implement the beamsplitter, mirror, and mixer, via two-photon Raman transitions.

Cold atom dual accelerometer-gyroscope (DARPA C-SCAN)

Cold atom dual accelerometer-gyroscope (DARPA C-SCAN)

Measurement sequence: Atom Cooling and Trapping

Magneto-optical trap (MOT)

DRAPER

Measurement sequence: Launching

DR **A** PER

Measurement sequence: State Preparation

DRAPER

DRAPER

Measurement sequence: Interferometry (Beamsplitter)

DRAPER

Ω

а

Measurement sequence: Interferometry (Beamsplitter – Mirror)

DRAPER

Ω

а

Measurement sequence: Interferometry (Beamsplitter – Mirror – Mixer)

DR **A** PER

Ω

a

Measurement sequence: State Detection

Recapture

- Fast loading of atoms (few milliseconds vs seconds)
- Comparatively high data rates (> 30 Hz) for an atom interferometer
 → better suited for dynamic environments than most existing cold
 atom interferometers

DRAPER

Similar work on an atomic gyroscope with atom recapturing: A. Rakholia, H. McGuinness, and G. Biedermann, Phys. Rev. Appl. **2**, 054012 (2014) ²⁴

Assembled sensor

Static measurements

- Acceleration-sensitive axis parallel to ground (~ 0 g)
- Rotation-sensitive axis pointing up (~10.5 deg/hr from Earth's rotation in Cambridge, MA)

DRAPER

Static measurements

- Acceleration-sensitive axis parallel to ground (~ 0 g)
- Rotation-sensitive axis pointing up (~10.5 deg/hr from Earth's rotation in Cambridge, MA)

Minus-k

Pier

Static measurements

Acceleration-sensitive axis parallel to ground (~ 0 g)

1000x better accuracy than consumer devices

1 mg (consumer MEMS accelerometer)

100 deg/hr (consumer MEMS gyroscope)

 Rotation-sensitive axis pointing up (~10.5 deg/hr from Earth's rotation in Cambridge, MA)

- Classical and atomic sensors mounted on same platform
- Good agreement between atomic and classical sensors
- Sensitivity of atomic sensor matches simple analytical expression: $\Delta \phi = (\vec{k} \cdot \vec{a})T^2 + 2\vec{k} \cdot (\vec{\Omega} \times \vec{v})T^2$ ٠

 τ [sec]

DR P E R

Dynamic measurements on a rate table

DRAPER

Size and complexity of most atomic sensors today

Cold-atom accelerometer-gyroscope at Draper Lab

Mobile atomic gravimeter from Mueller lab (UC Berkeley)

Challenges

- Thermal and mechanical instability
- Performance degradation during motion
- Assembly time and costs

Xuejian Wu et al. Sci Adv 2019;5:eaax0800

From labscale to chipscale

Integrated nanophotonics for atoms

Yang et al, Nature Photon 1, 331–335 (2007)

Metasurfaces

Nshii et al, Nat. Nanotechnol., 8, 321-324 (2013)

M. Khorasaninejad and F. Capasso, Science 358 6367 (2017)

Useful functionalities for atoms

- Polarization control
- Beam shaping and steering

Optically pumped atomic magnetometer with flat optics

Johnson et al, Applied Physics Letters 97(24) (2010)

Design of metasurface polarization components

- Approach based on Arbabi et al, Nature Nano 10, 937–943 (2015)
- Metasurface implemented by arrays of elliptical posts which provide independent phase shifts for different polarization axes

Back-propagation of desired vector field

Our polarizing beamsplitter design

See other implementations of metasurface polarization beamsplitting: [1] M. Khorasaninejad et al, *Optica* Vol. 2, Issue 4, pp.378-382(2015) [2] B. A. Slovick et al, *Phil. Trans. R. Soc.* A375: 0072 (2016) [3] E. Arbabi et al, ACS Photonics 5, 3132–3140 (2018)

Simulated polarizing beamsplitter performance

Broadband polarizing beamsplitter (Thorlabs): Transmission > 90% Extinction ratio > 1000

Simulated polarizing beamsplitter performance

Broadband polarizing beamsplitter (Thorlabs): Transmission > 90% Extinction ratio > 1000

Summary

- Atom-photon interactions are at the heart of all quantum sensing measurements
 - Photonic engineering crucial for atomic sensor development
- Cold-atom accelerometer and gyroscope demonstrated high sensitivity but presented integration and mobility challenges
- Integrated nanophotonics can address size and integration challenges of atomic sensors
 - Development of photonic-integrated-atomic magnetometer underway