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CVs: Advantages
■ Practical 

• deterministic entanglement 

• huge scaling potential
■ Fundamental 

• avoid premature optimisation 
(i.e., why should we restrict to photonic qubits?)

■ Both together 

• more options for practical tasks (e.g., quantum 
cryptography, cluster states) 

• "hybrid" schemes: CV technology helps to manipulate 
photonic quantum states
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CVs: Disadvantages
■ Practical 

• intrinsic noise due to finite squeezing (more later) 

• eventually need to discretise for error correction 
(more later)

■ Fundamental 

• more questions to answer (e.g., what discretisation?) 

• must incorporate effects of noise from day one 
(complicated, easy to end up writing a crap paper)

■ Both together 

• must do extra work to employ existing algorithms 

• smaller literature, fewer optimised experimental platforms
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Optical implementation

■ Continuous quantum variables 
• Computational basis: eigenstates of q = (a + a†)/√2 

• Conjugate basis: eigenstates of p = –i(a – a†)/√2 
■ Advantages of CV (over qubit) cluster states 

• Deterministic generation 
• Scalable to huge sizes 

■ Problem: ideal CV cluster states are infinitely 
squeezed (infinite energy) 
• Finite squeezing → additive Gaussian noise 
• Fault tolerance possible with encoded qubits 

(GKP)



!21

Computation with ideal states

■ Single-mode projective measurements are 
sufficient for universal QC 

■ Homodyne detection (quadrature 
measurements) enables all Gaussian unitaries 
• Relatively easy to do experimentally 
• Very low noise 

■ Photon counting enables the rest 
• Less efficient, but technology rapidly improving 

■ Still have to handle intrinsic noise…
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Fault tolerance

■ Homodyne detection implements (faulty) qubit 
gates 

■ Use qubit-level quantum error correction to 
reduce errors (well established) 

■ Fault tolerance 
 (initial error < threshold) → 
 (arbitrarily low error in final computation)



!30

Fault tolerance
High squeezing ⇒ low Gaussian noise ⇒ low rate of Pauli errors



!30

Fault tolerance
High squeezing ⇒ low Gaussian noise ⇒ low rate of Pauli errors

How  
high?



!30

Fault tolerance
High squeezing ⇒ low Gaussian noise ⇒ low rate of Pauli errors

How  
high?



!30

Fault tolerance

Fault-tolerant 
squeezing threshold 

≤ 20.5 dB

High squeezing ⇒ low Gaussian noise ⇒ low rate of Pauli errors
How  
high?
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Resources sufficient for FT QC

■ CV cluster state with sufficient squeezing: 
"railroad tracks" 

■ GKP qubits with sufficient squeezing: 
"train cars" carrying the discrete quantum 
information 

■ Homodyne detection = Gaussian unitaries: 
"switches" to guide the info & measurement 

■ Vacuum state!       (or heterodyne detection)
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Linear optics

■ Inline squeezing (CZ gate) can be replaced 
with offline squeezing + interferometer*

S

S

S

S

S

* P. van Loock, C. Weedbrook, M. Gu, PRA 76, 032321 (2007)
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Macronode-based cluster states

Temporal or 
frequency 

modes



Frequency-mode cluster states

!41



!42

Frequency-mode cluster states



!42

Frequency-mode cluster states

60-mode linear cluster state



!43

Frequency-mode cluster state (wire)

Pump
Laser*1

Pump
Laser*2

Pump*1

Pump*2

OPO
pump cluster state

frequency-
sensitive

measurements



!44

Homodyne
detectors

Pumps
OPO

Measurement
selection

Frequency-mode cluster state (wire)

OPO
pump cluster state

frequency-
sensitive

measurements



!45

Frequency-mode cluster state (wire)



!45

Frequency-mode cluster state (wire)



!45

Frequency-mode cluster state (wire)

equivalent



!45

Frequency-mode cluster state (wire)

equivalent 60 modes 
addressable



!45

Frequency-mode cluster state (wire)

equivalent

after 
polarization 

rotation
(verification)

60 modes 
addressable
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Animation by Seiji Armstrong
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Temporal-mode cluster states

1-million-mode linear cluster state!
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Temporal-mode cluster states

24,800 total modes 
5 x 1240 macronodes 

(4 modes each)
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Temporal-mode cluster states

30,000 total modes 
12 x 1250 macronodes 

(2 modes each)
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Other proposed approaches

■ Frequency-temporal modes 

• like musical tones: one frequency for some 
period of time 

• frequency adds an extra lattice dimension 
■ Frequency-spatial modes 

• frequency-encoded linear states in different 
beams woven together 

■ Three-dimensional lattice topologies
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Conclusion
■ CV cluster states 

• Enable measurement-based quantum computation using 
continuous variables 

• Fault tolerance is possible 

■ GKP qubits 
• Enable fault tolerance with CV cluster states 
• All-Gaussian gate set (only known bosonic code with this feature!) 
• Achieved in trapped ions and circuit QED 

■ Macronode-based methods are scalable 
• 1D CV cluster state (wire): frequency and temporal modes achieved 
• 2D CV cluster state (universal): temporal modes achieved 
• 3D and higher-dimensional lattices possible 
• Millions of modes achieved 
• Need to improve squeezing (~4.5 dB, need >10 dB)
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