
Opal Kelly

Opal Kelly’s FrontPanel software is designed to provide controllability and observability for FPGA de-
signs. It’s unique design allows users to describe their own control panels using industry-standard XML
descriptions of components such as LEDs, hex displays, push buttons, toggle buttons, triggers, and so
on. The components then connect to endpoints within the user’s FPGA design. Once connected, the
interface details are transparent. FrontPanel handles all interaction between the virtual controls and
the FPGA internals. In the end, FrontPanel eliminates the time and effort of interfacing to a design and
greatly assists in the external controllability and observability of that design.

A new way to control and observe FPGA designs
through virtual instruments on your PC.

FrontPanel™

Software, documentation, samples, and related materials are

Copyright © 2005-2007 Opal Kelly Incorporated.

Opal Kelly Incorporated
3442 SE Ironwood Ave
Hillsboro, OR 97123
http://www.opalkelly.com

All rights reserved. Unauthorized duplication, in whole or part, of this document by any means except for brief
excerpts in published reviews is prohibited without the express written permission of Opal Kelly Incorporated.

Opal Kelly, the Opal Kelly Logo, and FrontPanel are trademarks of Opal Kelly Incorporated.

Linux is a registered trademark of Linus Torvalds. Microsoft and Windows are both registered trademarks of
Microsoft Corporation. All other trademarks referenced herein are the property of their respective owners and no
trademark rights to the same are claimed.

Revision History:
Date Description
20040901 Initial release.
20040920 Added okDigitDisplay and okCombobox.
20041114 Several minor changes, added bases to okDigitEntry / okDigitDisplay.
20041201 Added okPLL22150.
20050131 Added XAPP131 reference in BufferedPipe descriptions.
20050223 Added “soundfile” and “label” parameters to okTriggerSound.
20050305 Added okKeyPanel and descriptions of okStaticText and okStaticBox.
20050313 Added Python API and Java API notes.
20050328 Updated to 16-bit host interface modules.
20050423 Added FrontPanel DLL notes.
20050507 Added PipeIn and PipeOut timing diagrams.
20050613 Fixed typo in okBufferedPipeOut example.
20050620 Added okGauge component.
20050927 Added simulation information.
20060703 Added okTriggerLog, okTriggerMessage.
20060822 Added notes on Aldec ActiveHDL simulation.
20060913 Added okFilePipe.
20061230 Updated for FrontPanel-3.
20070126 Updated Simulation notes.

Contents

An Introduction to FrontPanel . 7
Terminology . 7
Basic Functionality . 8

Peripheral Configuration . 8
Flexibility Outside the Design . 8

Controllability . 8
Observability . 9

XML and FrontPanel Components . 9
HDL Endpoints . 9

Designing with FrontPanel . 11
Endpoints . 11

Wires . 12
Triggers . 13
Pipes . 13
Block-Throttled Pipes . 14

Components . 14
Performance Notes . 14

Wires and Triggers . 14
Pipes (Bulk Transfers) . 15
Block-Throttled Pipes (Bulk Transfers) . 16
Isochronous Transfers? . 16

Application Programmer’s Interface . 17
Samples . 17

Organization . 18
The okCUsbFrontPanel Class . 18

USB Device Interaction . 18
Device Configuration . 19
FPGA Communication . 19

Communicating with Multiple Devices . 20
Querying Attached Devices . 20
Connecting to a Specific Device . 20

API Communication . 21
Wires . 21
Triggers . 21
Pipes . 22
Block-Throttled Pipes . 22

Example Usage . 22
Regarding Device “Ownership” . 23
Python API . 23

Required Files . 23
Example Usage . 24

Java API . 24
Required Files . 24
Example Usage . 24

FrontPanel DLL . 25
Example Usage (C) . 26
Example Usage (Matlab) . 27

Matlab API . 28
DLL Header File . 28
Support Status . 28

 HDL Modules . 29
Building FPGA Projects with FrontPanel HDL Modules 29
XEM3001v1 Note . 30
FPGA Resource Requirements . 31
The Host Interface . 31

okHostInterface . 31
Endpoint Types . 32

Endpoint Addresses . 33
okWireIn . 33
okWireOut . 33
okTriggerIn . 34
okTriggerOut . 34
okPipeIn . 34
okPipeOut . 35
okBTPipeIn . 36
okBTPipeOut . 37
okBufferedPipeIn . 38
okBufferedPipeOut . 39

Using the FrontPanel Application . 41
Selecting the Active Device . 42

Device Identifier String . 42
FPGA Configuration Download . 42

Drag and Drop . 42
PLL Configuration (CY22150) . 42

VCO Setup . 43
Divider #1 and #2 . 43
Outputs . 43
EEPROM Read . 43
EEPROM Write . 44
Apply . 44
Example PLL Configurations . 44

PLL Configuration (CY22393) . 44
Loading a FrontPanel Profile . 45

Drag and Drop . 45
Preferences . 45

Wire Update Rate . 45
Configure PLL Before FPGA Download . 45
Show Panels in Taskbar . 46
Enable Asynchronous Transfers . 46

Component XML . 47
XML . 47

Basic Structure for FrontPanel . 47
Comments . 48
Start-Tags and End-Tags . 48
Case Sensitivity . 48

Element Data Types . 49
Component Types . 49

okStaticText . 50
okStaticBox . 50
okPushbutton (Wire In) . 50
okToggleButton (Wire In) . 51
okToggleCheck (Wire In) . 51
okDigitEntry (Wire In) . 52
okSlider (Wire In) . 53
okCombobox (Wire In) . 53
okLED (Wire Out) . 54
okHex (Wire Out) . 54
okDigitDisplay (Wire Out) . 55
okGauge (Wire Out) . 56

okTriggerButton (Trigger In) . 56
okTriggerSound (Trigger Out) . 57
okTriggerLog (Trigger Out) . 57
okTriggerMessage (Trigger Out) . 57
okFilePipe (Pipe In, Pipe Out, Trigger In) . 58
okPLL22150 . 59
okPLL22393 . 60
okKeyPanel (Wire In, Trigger In) . 61

FrontPanel Host Simulation . 65
System Simulation Model . 65
Simulation Requirements . 66

Configuring ActiveHDL . 66
Configuring ModelSim . 66

Adding Host Simulation to a Test Fixture . 67
Example Test Fixtures . 67
Reset . 67
Simulating Pipes . 67

Simulation in Aldec ActiveHDL . 68
Design Workspace Setup . 68

Example - First . 69
Required Files . 69
Perform the Simulation . 69
Analyzing the Results . 70
Simulation Accuracy . 71

Example - DES Tester . 71

Appendix A: A Simple Example . 73
Toplevel Description . 74

Target Logic . 74
FrontPanel Interface Modules . 75

FrontPanel XML Description . 75
okPanel . 75
okToggleButton . 76
okLED . 76

Other Samples . 76

Appendix B: The Counters Sample . 79
Hardware Description . 79

Counter #1 . 80
Counter #2 . 80

Endpoints . 81
Wire In (0x00) . 81
Trigger In (0x40) . 81
Wire Out (0x20, 0x21, and 0x22) . 81

FrontPanel Components . 82
Panel 1: Counters Example . 82
Panel 2: Pushbuttons . 82

Quick Reference - Endpoints . 83
Quick Reference - Components . 84

7

FrontPanel User’s Manual

www.opalkelly.com

An Introduction to FrontPanel

FrontPanel is a software platform designed to make using Opal Kelly FPGA experimenta-
tion boards easier, more productive, more powerful, and more configurable. Most importantly,
FrontPanel provides the basic functionality required to configure the hardware including the
FPGA and peripherals on-board. After FPGA configuration, the USB interface switches from a
high-speed download port to active communication with FrontPanel allowing you to interface and
control your FPGA design from within a single application. By virtualizing many common controls
found on typical evaluation (or prototyping) boards, FrontPanel enables far greater flexibility and
capability than pure hardware-based approaches.

Terminology
Collectively, “FrontPanel” describes several components that make up the FrontPanel environ-
ment:

• “FrontPanel HDL” - HDL modules you design into your FPGA hardware that makes your
design “FrontPanel Enabled” and allows it to communicate with the PC.

• “FrontPanel Firmware” - Firmware running on the USB microcontroller that provides the
conduit for FPGA/PC communication.

• “FrontPanel API” - A complete programmer’s interface allowing you to design custom PC
applications that communicate with your FrontPanel Enabled hardware.

• “FrontPanel Application” - A flexible software application providing virtual instrumentation
to your hardware such as LEDs, hex displays, numeric entry, pushbuttons, and so on.

8

FrontPanel User’s Manual

www.opalkelly.com

Basic Functionality
FrontPanel is, most importantly, support software for Opal Kelly’s FPGA experimentation mod-
ules. In that role, FrontPanel allows you to quickly and easily download FPGA configuration files
via USB to a target device. Once the configuration file is downloaded, the device now takes on
that design’s personality and is ready for use. If desired, FrontPanel’s role is now complete.

Peripheral Configuration
Opal Kelly XEM devices contain additional peripherals to integrate FPGAs into your projects.
PLLs, audio CODECs, Flash memory, and other peripherals can benefit from the simple, single-
source configuration that FrontPanel offers. PLL outputs are independently configurable through
easy-to-use setup dialogs. Flash memory can be programmed, cleared, and reprogrammed in a
variety of ways and audio CODECs can be setup for different configurations.

Flexibility Outside the Design
FPGAs and other programmable logic devices have allowed engineers the unique opportunity
to construct complete hardware designs within the confines of a logic device. Unfortunately, this
means that many of the tools engineers typically employ to debug such designs such as oscil-
loscopes, LEDs, switches, and buttons are limited to viewing signals brought out to the external
pins of the device. FrontPanel takes these ideas closer to the realm of flexible logic devices
and makes them likewise flexible. In the end, however, FrontPanel provides controllability and
observability to your designs, reducing development time and putting a new face on your proto-
types.

FrontPanel Software on PC FPGA

User DesignUSB
uController

Host Interface

Endpoint (Wire Out)

Endpoint (Wire In)

Endpoint (...)

Endpoint (Wire Out)

USB Cable

XML:
<object class="pushbutton">
 <label>Start</label>
 <position>10,10</position>
 <size>80,20</size>
 <endpoint>0x08</endpoint>
 <bit>3</bit>
</object>

Verilog: (or VHDL)
okWireIn startEP(...,
 .ep_addr(8’h08), .ep_data(buttonwire));

Controllability
Any prototype or experiment invariably requires some level of control. Typically, devices such as
pushbuttons, DIP switches, rotary devices, or keypads are used. With most prototype systems,
however, what is provided is nearly never enough; you can always use one more button or switch
to select a different mode. Typically, the problem is solved by rebuilding the design with a differ-
ent mode or multiplexing the use of the available inputs.

9

FrontPanel User’s Manual

www.opalkelly.com

FrontPanel offers another solution. With a simple change in a couple files, new virtual buttons
and switches can be added quickly and connected to the proper points in your design.

Observability
Prototypes also require some level of observability, usually offered in the form of LEDs, hexa-
decimal displays, and LCDs or sampled externally by oscilloscopes and logic analyzers. Again,
however, there is the problem of limited resources in the typical prototype system. Only so many
LEDs and displays are present on an I/O board, so the problem is remedied by adding more I/O
boards or multiplexing the use of the current lot.

FrontPanel’s flexibility means you can display all sorts of information, in real-time, about the state
of any number of signals in your design. It’s like having an I/O board that allows you to add and
remove components at will without taking up valuable pins on the FPGA.

XML and FrontPanel Components
XML is the eXtensible Markup Language used in the latest generation of software applications
and other forms of markup (such as XHTML). It is simply a way to describe data that can be ma-
nipulated by any XML-supporting editor and in a platform-agnostic way. At its core, XML is just a
text file containing tags which correspond to nodes of a tree. Each node can have properties and
values.

FrontPanel interfaces are described using XML tags so they can be read and written with any
standard text editor. This means that adding components to your virtual “I/O board” is as easy
as adding a few lines to a text file. It also means that as FrontPanel grows in its capabilities, the
interface descriptions will be forward (and backward) compatible. As additional functionality is
added to FrontPanel, you will be able to take advantage of it by simply adding to your current
projects.

HDL Endpoints
On the FPGA side of the interface, “Endpoints” are used to connect FrontPanel components to
signals in your design. These endpoints work just like any external pin. You simply connect the
signals you want to control or observe to the endpoint ports. Then, connect the endpoint mod-
ules to a shared bus and place a Host Interface module on that same shared bus. The Host In-
terface along with FrontPanel software and drivers take care of the rest. Signals within the FPGA
are immediately visible within FrontPanel and FrontPanel can now control any input endpoints
you’ve connected.

Additional endpoints can be added at any time simply by instantiating additional endpoint mod-
ules. The modules are designed to consume very little FPGA resources so the effect on your
design is minimal.

10

FrontPanel User’s Manual

www.opalkelly.com

11

FrontPanel User’s Manual

www.opalkelly.com

Designing with FrontPanel

FrontPanel’s main purpose is to move data between your PC and your FPGA in order to pro-
vide a convenient and effective way for you to work with the design. FrontPanel was designed
to interface simply and easily with new and existing FPGA designs in a way which is powerful
enough to apply to a large number of interface methods, yet simple enough to apply to a design
in minutes. More importantly, FrontPanel attempts to make the specific implementation of the
physical interface (that is, the USB interface) disappear so that those details don’t get in the way
of your work.

FrontPanel introduces the concept of “endpoints” to your FPGA design. An endpoint is a bundle
of interconnect internal to your design that transports data to or from the PC in some fashion. In
many cases, the endpoint can be created from an existing signal in your design which you want
to observe in FrontPanel. In other cases, you will create an endpoint to perform a specific data
transfer.

“Components” are the corresponding PC-side interface to an endpoint in the FPGA. Compo-
nents may correspond to a single bit on an endpoint or to several endpoints. For example, an
okTriggerButton activates a single bit on a Trigger In endpoint. In contrast, a field that allows you
to enter or display a number spanning more than 256 would map to multiple endpoints.

Endpoints
In FrontPanel, an endpoint is either a Wire, Trigger, or Pipe, and is either directed in or out of
your design. By way of definition, the endpoint will always be labelled from the perspective of the
device (FPGA) so an “In” endpoint moves data into the design while an “Out” endpoint moves
data out of the design. All of the endpoints in a design are instantiated from Opal Kelly modules
and share a common connection to the Host Interface which provides the connection to the PC
through the USB interface on the XEM board.

12

FrontPanel User’s Manual

www.opalkelly.com

The figure below shows the block diagram of an example FPGA design. The okHostInterface is
instantiated once and connects to the external FPGA pins as well as a bus shared by all endpoint
HDL modules. This bus provides the communications channel for the endpoints to and from the
Host Interface.

okHostInterface

okWireIn (0x07)

okWireOut (0x24)

okTriggerOut (0x60)

okTriggerIn (0x52)

okWireIn (0x06)

okWireOut (0x23)

okPipeIn (0x80)

Status Information

Configuration

State Machine Start

State Machine Done

Load Data

Each instance of an endpoint has an associated address (shown in parentheses) so it may be
accessed independent of other endpoints. In this example, two Wire In endpoints setup the
configuration for the design and two Wire Out endpoints relay status information back to the PC.
The Trigger In endpoint is used to initiate a state machine and a Trigger Out endpoint is used
to indicate the completion of the state machine. A Pipe In endpoint is used to load data into a
memory within the design.

The three types of endpoints are summarized in the table below and described in more detail
after.

Endpoint Sync/Async Description
Wire In Asynchronous Transfers a signal state into the design.

(Examples: virtual pushbutton or switch)
Wire Out Asynchronous Transfers a signal state out of the design.

(Examples: virtual LED or hex display)
Trigger In Synchronous Generates one-shot signal destined for a particular clock.

(Example: pushbutton to start a state machine)
Trigger Out Synchronous Informs the PC that a particular event has occurred.

(Example: Done signal from a state-machine pops up a
window to the user or starts a data transfer)

Pipe In Synchronous Multi-byte synchronous transfer into the design.
(Example: Memory download, streaming data)

Pipe Out Synchronous Multi-byte synchronous transfer out of the design.
(Example: Memory upload, read results of a computation)

Wires
A Wire is an asynchronous connection between the PC and an HDL endpoint. A Wire In is an
input to the target. A Wire Out is an output from the target.

13

FrontPanel User’s Manual

www.opalkelly.com

Wires are designed to fill the position of devices such as LEDs, hexadecimal displays, pushbut-
tons, DIP switches, and so on. These devices are not synchronous to the design and they usu-
ally convey the current state of some internal signal (in the case of Wire Outs).

Wires are updated periodically using a polling mechanism. The rate of update is determined
by how fast the PC can poll the FPGA. In FrontPanel, this value is user-configurable. Even at
the highest update rate (25 millisecond period), very little USB bandwidth is consumed, so you
should not notice any performance penalty.

Because some FrontPanel components may convey the state of several wires, and in order to
avoid multiple transfers over the USB, all wires are captured and updated simultaneously. That is
not to say they are synchronous, but that they are all updated at the same time. Therefore, all 64
Wire Ins (or Wire Outs) are transferred together.

Triggers
Triggers are synchronous connections between the PC and an HDL endpoint. A Trigger In is
an input to the target. A Trigger Out is an output from the target. Triggers are used to initiate or
signal a single event such as the start or end of a state machine.

As an input to the HDL, a Trigger In creates a signal that is asserted for a single clock cycle. The
synchronization clock is determined by the user and the HDL module takes care of crossing the
clock domains properly.

As an output from the HDL, a Trigger Out triggers the PC when a signal’s rising edge is detected.
The “rising edge” is actually determined by the signal’s state from one clock cycle to the next and
does not detect glitches. It should be noted that because FrontPanel polls the FPGA periodically,
it can only detect independent trigger outs between polls. That is, once a Trigger Out is “set,” it
remains set until the next poll clears it.

Pipes
Pipes are synchronous connections between FrontPanel and an HDL endpoint. Unlike Triggers
which convey a single event, however, Pipes are designed to transmit a series of bytes to (or
from) the endpoint. They are most commonly used to download or upload memory contents but
may also be used to stream data to or from the device.

From the HDL point-of-view, a Pipe is always a master. That is, the PC (and therefore the HDL
module that implements the Pipe) controls the transaction for both Pipe Ins and Pipe Outs. In
addition, the Pipe transactions must be performed at the endpoint’s clock rate (48 MHz). To suc-
cessfully cross this clock boundary, a buffered (FIFO) arrangement is suggested. (okBuffered-
Pipes provide built-in asynchronous FIFOs)

Although access to the Pipe is always from a slave point of view, use of Triggers provides an ef-
fective negotiation method to synchronize the transfer of blocks of data.

Pipe transfer rates will vary depending on host hardware. Our tests indicate transfer rates to
the FPGA are around 39 MB/s and transfer rates from the FPGA are about 39 MB/s. For more
detail, see Performance Notes below.

FrontPanel-3 Note
Firmware supporting FrontPanel 1.4.1 and earlier was limited to approximately 32MB/s to the
FPGA and 19 MB/s from the FPGA.

14

FrontPanel User’s Manual

www.opalkelly.com

Block-Throttled Pipes
Block-Throttled Pipes (or BTPipes) are very similar to “standard” Pipes with one important distinc-
tion: BTPipes provide a way for the FPGA to “throttle” transfer through the pipe at a block level.
The block size is programmable from 1 to 512 words (2 to 1024 bytes). The FPGA throttles data
through the BTPipe by asserting or deasserting a READY signal to the USB microcontroller. This
allows the FPGA to halt data transfer until data is available or ready to be processed.

BTPipes provide the same transfer rates as standard pipes, but the throttling allows them to be
used in a wider array of applications and can, generally, increase performance by reducing the
overhead that would otherwise be required to negotiate the transfer at a higher level.

FrontPanel-3 Note
BTPipes are only available using firmware supporting FrontPanel-3.

Full-Speed USB Note
On full-speed USB busses, the block size is limited to 1 to 32 words (2 to 64 bytes).

Components
Components represent the other half of the interface, each connecting to an appropriate endpoint
or multiple endpoints within the design. Most components have a graphical representation within
FrontPanel such as a pushbutton, virtual LED, or numerical display. Some components, howev-
er, are hidden from view. An example of a hidden component would be one that makes a sound
in response to a Trigger Out.

Performance Notes
Opal Kelly’s FrontPanel consists of HDL modules within the FPGA, firmware on the USB
microcontroller, and an API on the PC that have been optimized for both performance and a
clean abstraction. Our latest FrontPanel-3 release has improved performance significantly while
offering several features that customers have requested.

Achieving the highest level of performance for your particular application requires an understand-
ing of the components being used and how certain things affect performance. By following a few
simple strategies and applying these notes, your application will be a top USB performer and still
benefit from the ease of use and flexible abstraction that only FrontPanel provides.

Measured Performance
Measured performance figures in this section were taken on an Athlon 64 X2 4800+ machine
running Windows XP SP2. USB performance can vary significantly depending on a number of
factors including the motherboard make and model, specific driver versions installed, and ma-
chine load.

Wires and Triggers
Wires and triggers provide the most basic form of communication between the FPGA and the
PC. From a performance perspective, wires can be read or written several hundred times per
second. All WireIns are read simultaneously, regardless of which ones you are interested in.
Similarly, all WireOuts are written simultaneously.

15

FrontPanel User’s Manual

www.opalkelly.com

Activating a TriggerIn is a very fast operation and can operate at over 1,000-times per second.
Only one trigger is written per call. Updating TriggerOuts is similar to reading all WireOuts: all
TriggerOuts are read simultaneously.

Measured Performance

API Call Calls per second
UpdateWireIns 1000+
UpdateWireOuts 800+
ActivateTriggerIn 1600+
UpdateTriggerOuts 800+

Pipes (Bulk Transfers)
Pipes are the fastest way to transmit or receive bulk data. Due to overhead, performance is best
with long transfers. Each time you perform a pipe transfer, several layers of setup are required
including those at the firmware level, API level, and operating system level. Therefore, it is best
to design around using long transfers, if possible. This generally means using large buffer sizes
on the FPGA and relying on external memory when possible.

Low-latency, high-bandwidth transfers present a special challenge to any protocol and USB (and
therefore FrontPanel) is no different. In this case, the two goals are at odds: trying to perform
many operations and still achieve high bandwidth. The problem is that the overhead associated
with setting up each transfer cuts into the time available to perform the data transfer.

It is important to note that Windows, Linux, and Mac OS X are not real-time operating systems.
They are complex systems that may have many other processes taking higher priority at any
given time. Therefore, it is often the case that simple operations (like moving a window) dramati-
cally reduce transfer bandwidth. This should be a consideration when designing the buffering for
any bandwidth-dependent application.

NOTE: Pipes in FrontPanel-3 are actually a subset of Block-Throttled Pipes where the EP_
READY signal is always asserted, thus disabling any throttling. Also, block sizes are always
1024 bytes except for the last block which may be smaller to account for the total length of the
transfer. Block sizes are 64 bytes when the device is enumerated at full-speed.

Measured Performance

Transfer length WriteToPipeIn ReadFromPipeOut
128 bytes 100 kB / s 100 kB / s
256 bytes 100 kB / s 200 kB / s
512 bytes 300 kB / s 400 kB / s
1.0 kB 700 kB / s 800 kB / s
4.0 kB 2.8 MB / s 3.1 MB / s
16.0 kB 8.9 MB / s 10.4 MB / s
64.0 kB 20.8 MB / s 23.2 MB / s
256 kB 31.8 MB / s 32.7 MB / s
1.0 MB 36.5 MB / s 36.7 MB / s
4.0 MB 37.9 MB / s 37.9 MB / s
8.0 MB 38.2 MB / s 38.1 MB / s

16

FrontPanel User’s Manual

www.opalkelly.com

Block-Throttled Pipes (Bulk Transfers)
Block-Throttled Pipes are available only in FrontPanel-3. They provide equivalent performance
to the standard pipe except that the FPGA can throttle the data transfer at the block level. The
block is programmable by the user with highest performance achieved at the largest (1,024-byte)
block size.

BTPipes are an excellent way to achieve high performance with smaller buffer sizes because the
FPGA can negotiate the transfer at a low level without incurring the significant overhead of set-
ting up a new transfer for each small buffer block.

Measured Performance
All measurements taken with a 8-MB transfer length.

Block length (bytes) WriteToBlockPipeIn ReadFromBlockPipeOut
4 353 kB / s 266 kB / s
16 1.33 MB / s 1.03 MB / s
64 4.88 MB / s 3.98 MB / s
256 17.7 MB / s 14.0 MB / s
300 20.6 MB / s 13.8 MB / s
400 24.8 MB / s 16.9 MB / s
512 29.9 MB / s 24.5 MB / s
600 32.8 MB / s 21.9 MB / s
700 35.1 MB / s 22.4 MB / s
800 35.7 MB / s 23.0 MB / s
900 35.0 MB / s 22.7 MB / s
1024 38.2 MB / s 38.1 MB / s

Isochronous Transfers?
FrontPanel does not support USB isochronous transfers. It is true that isochronous transfers can
negotiate for guaranteed bandwidth on the USB which can be very helpful when trying to build a
system that must deliver certain performance to the end-user. However, this guarantee comes
at a significant price: isochronous transfers do not provide the same level of error-detection and
error-correction that the more reliable USB bulk transfers provide. Furthermore, the guarantee is
only for bus bandwidth and says nothing about the operating system’s capabilities.

If an error occurs during the transmission of a bulk transfer, the host will request that the missing
packet be repeated. The host will also properly reconstitute the transmission so that everything
is properly sequenced.

With isochronous transfers, the bandwidth and latency requirements trump delivery accuracy.
Therefore, it is possible that some data may be lost in this pursuit. Isochronous transfers were
created for things such as multimedia content that requires on-time delivery. But if the host is too
busy or something interrupts the transfer, a few missing frames of video or a few milliseconds of
audio are considered expendable.

17

FrontPanel User’s Manual

www.opalkelly.com

The FrontPanel application provides a turnkey method to make basic user interaction available
to your FPGA hardware but it is not suitable for all applications, particularly those which require
further data processing on the PC side of the interface or when data transfer between the PC
and FPGA is required. In these cases, a custom software application is usually a better fit. To
this end, Opal Kelly provides the FrontPanel Application Programmer’s Interface (API), a cross-
platform interface to the underlying USB driver layer.

The FrontPanel API contains methods which communicate via the USB to the microcontroller on
the XEM, but the methods have been specifically designed to interface with FPGA hardware in a
manner which is consistent with most hardware designs. The API provides methods to interface
directly with the FrontPanel HDL modules such as wires, triggers, and pipes. Because of this
abstraction, some flexibility in the USB interface is sacrificed for a dramatically reduced develop-
ment cycle (and learning curve!) for connecting your FPGA hardware to your custom software.

The library is written in C++ and is provided as a dynamically-linked ibrary. However, Python and
Java versions of the API are also available and can make FPGA development even faster. A de-
tailed API reference is available in HTML format (or Compiled HTML under Windows). Because
the Python and Java APIs are generated automatically from the C++ API, most of the methods
are identical and you can use the same API reference for all languages. This section of the
manual provides a higher-level introduction to the API’s organization and use.

Samples
Often, the best way to learn how to apply a programming interface is to see examples of its ap-
plication. Please see the samples included with FrontPanel for these examples.

Application Programmer’s Interface

18

FrontPanel User’s Manual

www.opalkelly.com

Organization
The FrontPanel API is provided as a dynamically-linked library that you include with your applica-
tion. The interface to the DLL is C, but a C++ wrapper is provided to make the entire DLL appear
as if it were a native C++ class in your application.

The library contains a small number of classes which you then instantiate within your code. The
details of the USB connection between the FPGA and your PC disappear within the neat con-
fines of the API. These classes are shown in the table below in further detailed in what follows.

Class Description
okCPLL22150 This is a container class providing methods and structure used to config-

ure the Cypress 22150 PLL on the XEM3001. An instance of this class
can be created and used to program the on-board PLL or the class can
be generated from the EEPROM settings.

okCPLL22393 This is a container class providing methods and structure used to config-
ure the Cypress 22150 PLL on the XEM3001. An instance of this class
can be created and used to program the on-board PLL or the class can
be generated from the EEPROM settings.

okCUsbFrontPanel This is the base class used to find, configure, and communicate with a
FrontPanel-enabled device. The methods in the API are organized into
four main groups: USB Device Interaction, Device Configuration, FPGA
Communication, and Event Handling.

The okCUsbFrontPanel Class
This class is the workhorse of the FrontPanel API. It’s methods are organized into three main
groups: USB Device Interaction, Device Configuration, and FPGA Communication.

In a typical application, your software will perform the following steps:

1. Create an instance of okCUsbFrontPanel.

2. Using the USB Device Interaction methods, find an appropriate XEM with which to com-
municate and open that device.

3. Configure the XEM PLL.

4. Download a configuration file to the FPGA using ConfigureFPGA(...).

5. Perform any application-specific communication with the FPGA using the FPGA Commu-
nication methods.

USB Device Interaction
As much as the API encapsulates the underlying details of the USB interface, the fact remains
that the XEM is a USB device and therefore must play by the rules. These methods provide a
means to iterate all attached XEM devices, query certain information about each one, and ulti-
mately open a particular device for communication. These methods are summarized in the fol-
lowing table. For brevity, arguments have been removed. Please see the API reference manual
for more details.

19

FrontPanel User’s Manual

www.opalkelly.com

Method Description
GetDeviceCount Returns the number of FrontPanel devices attached to the PC.

Note that this counts -all- FrontPanel devices and also queries
information about each device which can be retrieved using the Get-
DeviceListXXX methods below.

GetDeviceListModel Retrieves the board model of a connected device.
GetDeviceListSerial Retrieves the serial number of a connected devicce.
OpenBySerial Opens a device (with matching serial number) for communication.
GetDeviceMinorVersion Retrieves the current firmware minor version.
GetDeviceMajorVersion Retrieves the current firmware major version.
GetSerialNumber Returns a 10-digit serial number unique to each device. This serial

number may be used to select a specific device on the USB bus.
The serial number is set at the factory and is not user-modifiable.

Device Configuration
Once an available device has been opened, these methods allow you to configure it’s available
features such as PLL settings and EEPROM parameters and to download configuration data to
the FPGA.

Method Description
GetDeviceID Returns a device identification string stored in the device.

Unlike the serial number, this string may be changed by the
user using the API or the FrontPanel application. It is not
guaranteed to be unique.

SetDeviceID Allows the user to set the device ID.
LoadDefaultPLLConfiguration Configures the PLL with settings stored in EEPROM.
GetPLLxxxConfiguration Retrieves the current on-board PLL configuration. (xxx is

either 22150 or 22393)
SetPLLxxxConfiguration Sets the on-board PLL to a given configuration. (xxx is either

22150 or 22393)
GetEepromPLLxxxConfiguration Retrieves the PLL configuration stored in the on-board EE-

PROM. (xxx is either 22150 or 22393)
SetEepromPLLxxxConfiguration Programs the on-board EEPROM with a PLL configuration

for later retrieval. (xxx is either 22150 or 22393)
ConfigureFPGA Downloads a Xilinx configuration bitfile to the FPGA.
ConfigureFPGAFromMemory Similar to above, but with the configuration file contents in

memory.

FPGA Communication
Once the FPGA has been configured, communication between the application and the FPGA
hardware is done through these methods. The FPGA is connected directly to the USB
microcontroller on the XEM. These methods communicate through that connection and require
that an instance of the HDL module okHostInterface be installed in the FPGA configuration.

A brief description of the API methods is in the table below. The way the API and FrontPanel
HDL modules communicate is described in more detail later.

20

FrontPanel User’s Manual

www.opalkelly.com

Method Description
IsFrontPanelEnabled Checks to see that an instance of the okHostInterface is installed in

the FPGA configuration.
IsFrontPanel3Supported Returns true if the firmware on the device supports FrontPanel-3.
ResetFPGA Sends a reset signal through the host interface. This is used to reset

the host interface or any endpoints. It can also be used to reset user
hardware.

UpdateWireIns Updates all wire in values (to FPGA) simultaneously with the values
held internally to the API.

UpdateWireOuts Simultaneously retrieves all wire out values (from FPGA) and stores
the values internally.

UpdateTriggerOuts Retrieves all trigger out values (from FPGA) and records which end-
points have triggered since the last query.

SetWireInValue Sets a wire in endpoint value. Requires a subsequent call to Up-
dateWireIns.

GetWireOutValue Retrieves a wire out endpoint value. Requires a previous call to
UpdateWireOuts.

ActivateTriggerIn Activates a given trigger in endpoint.
IsTriggered Returns true if a particular trigger out endpoint has been triggered

since a previous call to UpdateTriggerOuts.
WriteToPipeIn Writes data (byte array) to a pipe in.
ReadFromPipeOut Reads data (byte array) from a pipe out.
WriteToBlockPipeIn Writes data to a block-throttled pipe in.
ReadFromBlockPipeOut Reads data from a block-throttled pipe out.

Communicating with Multiple Devices
In most cases, your software will communicate with a single device attached to the USB. How-
ever, some applications require simultaneous communication with two or more devices. Multiple-
device communication is fully supported by the driver and API but will require special consider-
ation when initializing the communication.

Querying Attached Devices
You can call the method GetDeviceCount() to determine the number of supported devices at-
tached to the bus before opening a specific a specific device. The GetDeviceCount() method
also queries the device serial numbers, board types, and device ID strings of all the attached
devices. This information can then be accessed by calling the methods GetDeviceListSerial(),
GetDeviceListModel(), and GetDeviceListID(), respectively.

Connecting to a Specific Device
It is expected that you would identify a specific board using the serial number (factory-assigned
and not user-mutable) or using the device ID string (user configurable via FrontPanel). A typical
process for openening multiple devices would then be:

1. Create two instances (call them x and y) of the okCUsbFrontPanel.

2. Call x.GetDeviceCount() to verify that two boards are connected and to query the serial
numbers and other device information.

21

FrontPanel User’s Manual

www.opalkelly.com

3. Call serX = x.GetDeviceListSerial(0) to get the first device’s serial number.

4. Call serY = x.GetDeviceListSerial(1) to get the second device’s serial number.

5. Call x.OpenBySerial(serX) to open the first device.

6. Call y.OpenBySerial(serY) to open the second device.

Using this procedure, you would then have two instances which point to the two devices in your
system. They have also been clearly associated with the specific hardware you specified, so
there is no ambiguity.

API Communication
The three endpoint types (Wire, Trigger, Pipe) provide a means by which the PC and FPGA
communicate. Each type is suited to a specific type of data transfer and has its own associated
usage and rules.

Wires
Recall that a wire is used to communicate asynchronous signal state between the host (PC) and
the target (FPGA). The okHostInterface supports up to 32 Wire In endpoints and 32 Wire Out
endpoints connected to it. To save bandwidth, all Wire In or Wire Out endpoints are updated at
the same time and written or read by the host in one block.

All Wire In (to FPGA) endpoints are updated by the host at the same time with the call Up-
dateWireIns(). Prior to this call, the application sets new Wire In values using the API method
SetWireInValue(). The SetWireInValue() simply updates the wire values in a data structure inter-
nal to the API. UpdateWireIns() then transfers these values to the FPGA.

All Wire Out (from FPGA) endpoints are likewise read by the host at the same time with a call to
UpdateWireOuts(). This call reads all 32 Wire Out endpoints and stores their values in an inter-
nal data structure. The specific endpoint values can then be read out using GetWireOutValue().

Note: UpdateWireIns() and UpdateWireOuts() also latch all wire endpoint data at the same time.
Therefore, the data available on Wire Out endpoints are all captured synchronously (with the tar-
get interface clock). Similarly, the data availble to Wire In endpoints is all latched synchronously
with the target interface clock.

Triggers
Triggers are used to communicate a singular event between the host and target. A Trigger In
provides a way for the host to convey a “one-shot” on an arbitrary FPGA clock. A Trigger Out
provides a way for the FPGA to signal the host with a “one-shot” or other single-event indicator.

Triggers are read and updated in a manner similar to Wires. All Trigger Ins are transferred to the
FPGA at the same time and all Trigger Outs are transferred from the FPGA at the same time.
However, due to common usage differences, Trigger Ins are not transferred immediately with the
call to ActivateTriggerIn().

Trigger Out information is read from the FPGA using the call UpdateTriggerOuts(). Subsequent
calls to IsTriggered() then return ‘true’ if the trigger has been activated since the last call to Upda-
teTriggerOuts().

22

FrontPanel User’s Manual

www.opalkelly.com

Pipes
Pipe communication is the synchronous communication of one or more bytes of data. In both
Pipe In and Pipe Out cases, the host is the master. Therefore, the FPGA must be able to accept
(or provide) data on any time. Wires, Triggers, and Buffered Pipes can make things a little more
negotiable.

When data is written by the host to a Pipe In endpoint using WriteToPipeIn(...), the USB driver
will packetize the data as necessary for the USB protocol. Once the transfer has started, it will
continue to completion, so the FPGA must be prepared to accept all of the data.

When data is read by the host from a Pipe Out endpoint using ReadFromPipeOut(...), the USB
driver will again packetize the data as necessary. The transfer will proceed from start to comple-
tion, so the FPGA must be prepared to provide data to the Pipe Out as requested.

Byte Order
Pipe data is transferred over the USB in 8-bit words but transferred to the FPGA in 16-bit words.
Therefore, on the FPGA side (HDL), the Pipe interface has a 16-bit word width but on the PC
side (API), the Pipe interface has an 8-bit word width.

When writing to Pipe Ins, the first byte written is transferred over the lower order bits of the data
bus (7:0). The second byte written is transferred over the higher order bits of the data bus (15:8).
Similarly, when reading from Pipe Outs, the lower order bits are the first byte read and the higher
order bits are the second byte read.

Block-Throttled Pipes
Block-Throttled Pipe communication is identical to Pipe communication with the additional speci-
fication of a block size. The FPGA sends (or receives) data in blocks sized 2, 4, 6, ..., 1024 as
specified by the arguments to the call. Block sizes are restricted to 64 bytes or less when using
the device at full-speed.

Because the FPGA has the opportunity to stall the transfer by deasserting EP_READY, the call
may fail with a timeout.

Example Usage
Below is a short code snippet that illustrates how the API might be used in a C++ application.
More useful and detailed examples can be found in the Samples folder of the FrontPanel instal-
lation.

23

FrontPanel User’s Manual

www.opalkelly.com

// Create an instance of the okCUsbFrontPanel.
okCUsbFrontPanel *xem = new okCUsbFrontPanel();

// Open the first available device.
xem->OpenBySerial();

// Configure the PLL using the stored EEPROM settings.
xem->LoadDefaultPLLConfiguration();

// Download a configuration file to the FPGA.
xem->ConfigureFPGA(“mybitfile.bit”);

// Set a value on WireIn endpoint 0x00.
SetWireInValue(0x00, 0x37);
UpdateWireIns();

// Activate TriggerIn 0x40:0 (clears address pointers).
ActivateTriggerIn(0x40, 0);

// Send 1024 bytes to PipeIn 0x80.
WriteToPipeIn(0x80, 1024, buf);
// Read 1024 from PipeOut 0xA0.
ReadFromPipeOut(0xA0, 1024, buf);

// Read the result from WireOut endpoint 0x20.
UpdateWireOuts();
result = GetWireOutValue(0x20);

Regarding Device “Ownership”
In general, once an instance of okCUsbFrontPanel has been opened, that instance “owns” the
device. That means that, while the API will allow you to create another instance and communi-
cate with the same device, there are likely going to be problems with doing so.

In situations where you must have multiple threads or processes communicating with the same
device, it is better to have a single owner of the device instance and route all calls through that
owner.

The exception to this is GetDeviceCount() and the associated calls. You can call this method at
any time (even before opening a device) to determine the number of attached FrontPanel devices
and retrieve their model numbers, and serial numbers. You may not retrieve the Device ID string
without opening the device and that implies “owning” the device.

Python API
The Python API is built as an import library to be used with the Python interpreted programming
language. Python is a powerful extensible language with a clear syntax, making it ripe for the
FrontPanel API add-on. The Python API is built using the C++ API as a foundation, so the simi-
larities are pervasive.

The Python API is compiled for each supported platform into a shared object file (DLL under
Windows or .so under Linux) and distributed along with a couple Python files that define the
package. The Python interpreter can access the API methods through this shared object and
Python package.

Required Files
The Python API distribution includes four files as listed below:

24

FrontPanel User’s Manual

www.opalkelly.com

● __init__.py

● __version__.py

● ok.py

● _ok.dll (Windows)

● _ok.so (Linux, Mac OS X)

These four files need to be in the current working directory where Python is started. Alterna-
tively, they may be added to the Python site-packages directory within your Python distribution.
Refer to the Python manual to see how this is done.

Example Usage
Using the API from Python is quite easy and can be done scripted or interactively. Below is an
example interaction with the Counters sample project.

>>> import ok
>>> xem = ok.FrontPanel()
>>> pll = ok.PLL22150()
>>> xem.GetEepromPLL22150Configuration(pll)
1
>>> xem.SetPLL22150Configuration(pll)
1
>>> pll.GetOutputFrequency(0)
100.0
>>> xem.ConfigureFPGA(‘c:\counters.bit’)
1
>>> xem.ActivateTriggerIn(0x40,0)
1
>>>

Java API
The Java API is built as an extension library to be used with Sun’s compiled Java language. It
it built on top of the JNI (Java Native Interface). The API is distributed as a shared library and a
Java archive (JAR file).

Required Files
There are only two required files for the Java API: the shared library and the Java archive:

● okjFrontPanel.dll (Windows)

● okjFrontPanel.so (Linux)

● libokjFrontPanel.jnilib (Mac OS X)

● okjFrontPanel.jar

Under Windows, you can keep the DLL in the directory where you run java. Under Linux, the
shared object should be placed within your java.class.path. For example, under the SuSE 9.2
Linux distribution, you would copy the file to: /usr/lib/jre/lib/i386.

Example Usage
Within a Java source that uses the Java FrontPanel API, you need to import the FrontPanel
classes using the following line:

25

FrontPanel User’s Manual

www.opalkelly.com

import com.opalkelly.frontpanel.*;

To actually load the FrontPanel library into Java, you will also need to make the following System
call before using any FrontPanel API objects:

System.loadLibrary(“okjFrontPanel”);

Compiling a Java application for use with the Java API can be done on the command line using
javac with the -classpath argument to specify the Java API JAR as shown below.

javac -classpath okjFrontPanel.jar MyClass.java

Likewise, when running the application, you need to add the Java API JAR to the classpath:

java -classpath .;okjFrontPanel.jar MyClass

A thorough example of the Java API is included in the DESTester application. Shown below is
the Python example above transformed into Java.

import com.opalkelly.frontpanel.*;
public class JavaAPITest {
 public void TestMethod() {
 xem = new okFrontPanel();
 pll = new okPLL22150();
 xem.GetEepromPLL22150Configuration(pll);
 xem.SetPLL22150Configuration(pll);
 System.out.println(“PLL Output: “ + pll.GetOutputFrequency(0) + “ MHz”);

 xem.ConfigureFPGA(“c:/counters.bit”);
 xem.ActivateTriggerIn((short)0x40, (short)0);
 }
}

FrontPanel DLL
On the Windows platform, a dynamically-linked library (DLL) is available. This DLL makes it pos-
sible to call the FrontPanel API from other programming languages (such as VisualBasic) as well
as from many third-party software applications such as LabVIEW and Matlab. It also means that
you don’t need to have a precompiled API library specific to your compiler.

The FrontPanel DLL is provided as three files listed in the table below:

Filename Description
okFrontPanel.dll The FrontPanel DLL binary. This file needs to be located with your ap-

plication executable or, for third-party software, in the appropriate DLL
location.

okFrontPanelDLL.cpp This file contains the FrontPanel DLL stub functions for use within a C
application that will call the DLL. Many applications will not require the
use of this file.

okFrontPanelDLL.h This header file contains the FrontPanel DLL entrypoints corresponding
to the stub functions in okFrontPanelDLL.c

26

FrontPanel User’s Manual

www.opalkelly.com

In most cases, each class method has a corresponding DLL entrypoint. This makes it easy to re-
fer to the standard API documentation for calling information. One notable difference is that most
DLL entrypoints require a pointer argument. This pointer is actually the pointer to the allocated
C++ class object. Note, however, that this object is allocated and deallocated using DLL entry-
points and therefore the DLL does NOT require C++ and can be used in any C application.

Example Usage (C)
When using the DLL in a compiled C application, you will need to compile and link the
okFrontPanelDLL.cpp file with your application. This file provides the stub functions
that will load and call the DLL from your application. You will also need to include the file
okFrontPanelDLL.h in each source file that calls the DLL.

Initialization
Before calling functions within the DLL, you need to load the DLL library. This is done with the
following call:

// Initialize the DLL and load all entrypoints.
if (FALSE == okFrontPanelDLL_LoadLib()) {
 printf(“ERROR: FrontPanel DLL could not be initialized.\n”);
}

Constructing and Destructing Objects
The FrontPanel API is an object-oriented library but the DLL is strictly C-style. Therefore, meth-
ods have been provided in the DLL for creating and destroying the objects such as okCPLL22150
and okCUsbFrontPanel. An object must be created before its methods can be called. An object
should also be destructed when you are done using it.

okUSBFRONTPANEL_HANDLE xem;
xem = okUsbFrontPanel_Construct();
...
 // Use the ‘xem’ object.
...
okUsbFrontPanel_Destruct(xem);

Calling Methods
Each DLL method that acts on an object has an additional required argument that indicates which
object is being acted upon. In C++, this additional argument is implied by the object-oriented
nature of the language. In the DLL this argument must be explicitly provided.

C++ Wrapper
Also included in the okFrontPanel.cpp file is a C++ wrapper for the DLL. This provides a full
C++ object class so that you do not have to call the C-style DLL methods from your C++ applica-
tion. Most of the samples are written using this C++ wrapper.

27

FrontPanel User’s Manual

www.opalkelly.com

okUSBFRONTPANEL_HANDLE xem;
okPLL22150_HANDLE pll;

// Construct XEM and PLL objects.
xem = okUsbFrontPanel_Construct();
pll = okPLL22150_Construct();

// Setup the PLL.
okPLL22150_SetVCOParameters(pll, 400, 48);
okPLL22150_SetDiv1(pll, DivSrc_VCO, 8);
okPLL22150_SetOutputSource(pll, 0, ClkSrc_Div1ByN);
okPLL22150_SetOutputEnable(pll, 0, true);

// Configure the XEM PLL.
okUsbFrontPanel_OpenBySerial(xem, NULL);
okUsbFrontPanel_SetPLLConfiguration(xem, pll);

// Finished with the PLL.
okPLL22150_Destruct(pll);

...
 // Use the ‘xem’ object.
...

okUsbFrontPanel_Destruct(xem);

Example Usage (Matlab)
Matlab provides a convenient way to extend its own capabilities by calling user-provided DLL
functions. This is done using a few native Matlab calls: loadlibrary, calllib, libisloaded, libfunc-
tions, libfunctionsview.

For example, to load the FrontPanel DLL into Matlab for use, the following syntax can be used:

if ~libisloaded(‘okFrontPanel’)
 loadlibrary(‘okFrontPanel’, ‘okFrontPanelDLL.h’);
end

You can view the calling conventions and conversions Matlab has applied to the DLL methods by
calling the command “libfunctionsview(‘okFrontPanel’)”. An example way to call the DLL:

% Create a device structure:
xid.ptr = 0;
xid.serial = ‘‘;
xid.deviceID = ‘‘;
xid.major = 0;
xid.minor = 0;

% Construct an XEM3001v2 and open the first device:
xid.ptr = calllib(‘okFrontPanel’, ‘okUsbXEM3001v2_Construct’);
[ret, x] = calllib(‘okFrontPanel’, ‘okUsbFrontPanel_Open’, xid.ptr, 0);
[xid.major, x] = calllib(‘okFrontPanel’, ...
 ‘okUsbFrontPanel_GetDeviceMajorVersion’, xid.ptr);
[xid.minor, x] = calllib(‘okFrontPanel’, ...
 ‘okUsbFrontPanel_GetDeviceMinorVersion’, xid.ptr);
[x, xid.serial] = calllib(‘okFrontPanel’, ...
 ‘okUsbFrontPanel_GetSerialNumber’, xid.ptr, ‘ ‘);
[x, xid.deviceID] = calllib(‘okFrontPanel’, ...
 ‘okUsbFrontPanel_GetDeviceID’, xid.ptr,
 ‘ ‘);

28

FrontPanel User’s Manual

www.opalkelly.com

Matlab API
While the above example shows how to use the FrontPanel DLL from within Matlab, we have al-
ready provided a more thorough version of this API for your usage. It is provided as a fully-func-
tioning sample of the DLL usage from within Matlab and utilizes Matlab’s object-oriented structure
to provide an API that is very similar to the C++ API in usage.

DLL Header File
Due to a bug in Matlab’s DLL usage, a slightly modified DLL header file must be used when
accessing the API through Matlab. This revised header defines the HANDLE objects as
unsigned long rather than void *. If the revised header file is not used, memory leaks will
occur in Matlab.

Support Status
Please note that the Matlab API is not officially supported by Opal Kelly. While it is not officially
supported, we would like to keep it up-to-date. Please contact us via email if you have any sug-
gested changes to the Matlab API.

29

FrontPanel User’s Manual

www.opalkelly.com

 HDL Modules

The use of FrontPanel components to control and observe pieces of your FPGA design requires
the instantiation of one or more modules in your toplevel HDL. These modules can quickly and
easily be added into an existing or new design and take care of all the dirty work of communicat-
ing with the FrontPanel software.

The host interface is the block which connects directly to pins on the FPGA which are connected
on the XEM board to the USB microcontroller. This is the entry point for FrontPanel into your
design.

The endpoints connect to a shared control bus on the host interface. This internal bus is used
to shuttle the endpoint connections to and from the host interface. Several endpoints may be
connected to this shared bus. FrontPanel uses endpoint addresses to select which endpoint it is
communicating with, so each endpoint must have its own unique address to work properly.

Building FPGA Projects with FrontPanel HDL Modules
The FrontPanel HDL Modules are provided as pre-synthesized files which get included in your
design flow. The following table lists these files and describes it’s content. By default, these files
are installed at C:\Program Files\Opal Kelly\FrontPanel\FrontPanelHDL. In this directory are
several subdirectories that contain HDL modules built for different Xilinx ISE versions. If you are
using an XEM3001v1 (8-bit) board, choose a ‘v1’ directory. Otherwise, choose a ‘v2’ directory.

30

FrontPanel User’s Manual

www.opalkelly.com

Filename Description
okLibrary.v Verilog file containing black-box modules for Verilog projects.
okLibrary.vhd VHDL file containing black-box modules for VHDL projects.
okHostInterfaceCore.ngc Pre-synthesized Xilinx module for the Host Interface.
okWireIn.ngc Pre-synthesized Xilinx module for the Wire In endpoint.
okWireOut.ngc Pre-synthesized Xilinx module for the Wire Out endpoint.
okTriggerIn.ngc Pre-synthesized Xilinx module for the Trigger In endpoint.
okTriggerOut.ngc Pre-synthesized Xilinx module for the Trigger Out endpoint.
okPipeIn.ngc Pre-synthesized Xilinx module for the Pipe In endpoint.
okPipeOut.ngc Pre-synthesized Xilinx module for the Pipe Out endpoint.
okBTPipeIn.ngc Pre-synthesized Xilinx module for the Block-Throttled Pipe In

endpoint.
okBTPipeOut.ngc Pre-synthesized Xilinx module for the Block-Throttled Pipe

Out endpoint.

The Host Interface is actually broken into two components - a core component which is pre-
synthesized and a wrapper component (in okLibrary.v or okLibrary.vhd) which includes the core
component as well as IOBs required for the connections to FPGA pins.

When you start a new design, you should copy okLibary.v or okLibrary.vhd into the directory
with your other sources and add them to your project. This file will be synthesized just like your
other modules except that the HDL is mostly just a placeholder for the modules that have been
pre-synthesized. When properly added to a project, Project Navigator will list the source follows
similar to what is shown below:

You should also copy the pre-synthesized files (*.ngc) that you use into your project directory.
You won’t need to copy module files that you are not using. The .ngc files will then be used by
the Xilinx tools during the Translate step in order to completely build the FPGA configuration file.

XEM3001v1 Note
The first PCB revision of the XEM3001 (date code: 20040301) had an 8-bit host interface. All
newer implementations have a 16-bit interface. For the purposes of this section, the only things
which change are the HI_DATA, TI_DATA busses, as well as the widths of the endpoint connec-
tions (such as EP_DATAIN and EP_DATAOUT). For the XEM3001v1, simply substitute an 8-bit
bus in those places.

31

FrontPanel User’s Manual

www.opalkelly.com

FPGA Resource Requirements
The FrontPanel-enabling modules have been designed to consume as few resources as possible
within the FPGA. The resource requirements for each block are listed in the tables below. Keep
in mind that these are requirements for an endpoint with all bits used. In many cases, the place
and route tools will optimize and remove unused components.

Resource Slices Slice
FFs

4-in
LUTs

TBUFs Block
RAMs

Host Interface 32 33 49 8 0
Wire In 11 16 14 0 0
Wire Out 7 8 5 8 0
Trigger In 20 32 21 0 0
Trigger Out 18 27 15 8 0
Pipe In 10 9 10 0 0
Pipe Out 3 0 6 8 0
BT Pipe In ? ? ? ? ?
BT Pipe Out ? ? ? ? ?

The Host Interface
The host interface is the gateway for FrontPanel to control and observe your design. It contains
relatively simple logic that lets the USB microcontroller on the XEM board communicate with
the various endpoints within the design. Exactly one host interface must be instantiated in any
design which uses the FrontPanel components.

The Host Interface component is the only block which is synthesized with your design. It con-
tains a Host Interface core component (provided as a pre-synthesized module) as well as the
necessary IOB components to connect to the host interface pins of the FPGA.

okHostInterface
This module must be instantiated in any design that makes use of FrontPanel virtual interface
components. The following signals need to be connected directly to pins on the FPGA which
go to the USB microcontroller on the XEM. For a listing of the pin locations for a particular XEM
product, please see the user’s manual for that device.

Signal Direction Description
HI_IN[7:0] Input Host interface input signals.
HI_OUT[1:0] Output Host interface output signals.
HI_INOUT[15:0] In/Out Host interface bidirectional signals.

32

FrontPanel User’s Manual

www.opalkelly.com

The remaining ports of the okHostInterface are connected to a shared bus inside your design.
These signals are collectively referred to as the target interface bus. Each endpoint must con-
nect to these signals for proper operation.
Signal Direction Description
OK1[30:0] Output Control signals to the target endpoints.
OK2[16:0] Input Control signals from the target endpoints.
TI_CLK Output Buffered copy of the host interface clock (48 MHz). This

signal does not need to be connected to the target end-
points because it is replicated within OK1.

Instantiation of the okHostInterface is simple in either VHDL or Verilog. Use the templates below
in your toplevel HDL design. A more detailed listing can be found later in this manual as one of
the examples.

Verilog Instantiation:
okHostInterface hostIF (.hi_in(hi_in),
 .hi_out(hi_out), .hi_inout(hi_inout),
 .ti_clk(ticlk), .ok1(ok1), .ok2(ok2));

VHDL Instantiation:
okHI : okHostInterface port map (hi_in => hi_in,
 hi_out => hi_out, hi_inout => hi_inout,
 ti_clk => ticlk, ok1 => ok1, ok2 => ok2);

Endpoint Types
FrontPanel supports three basic types of endpoints: Wire, Trigger, and Pipe. Each can either be
an input (from host to target) or output (from target to host). Each endpoint type has a certain
address range which must be used for proper operation. The address is specified at the instan-
tiation of the endpoint module in your design.

Endpoint Type Address Range Sync/Async Data Type
Wire In 0x00 - 0x1F Asynchronous Signal state
Wire Out 0x20 - 0x3F Asynchronous Signal state
Trigger In 0x40 - 0x5F Synchronous One-shot
Trigger Out 0x60 - 0x7F Synchronous One-shot
Pipe In 0x80 - 0x9F Synchronous Multi-byte transfer
Pipe Out 0xA0 - 0xBF Synchronous Multi-byte transfer

Endpoints are instantiated in your HDL design and connected to the okHostInterface target ports.
Each endpoint also has one or more ports which are connected to various signals in your design,
depending on the endpoint module.

Each endpoint is connected to 48 target interface pins on the okHostInterface module. The
direction is from the perspective of the endpoint module.

Signal Direction Description
OK1[30:0] Input Interface control (HI to target).
OK2[16:0] Output Interface control (Target to HI).

33

FrontPanel User’s Manual

www.opalkelly.com

These signals are present in every endpoint. In the signal tables for the independent endpoints
below, we have left out these common signals.

Endpoint Addresses
Endpoints attach to the host interface on a shared bus. To properly route signals between the
host (PC) and target endpoints, each endpoint must be assigned a unique 8-bit address. For
performance reasons (to minimize USB transactions), each endpoint type has been assigned an
address range as indicated in the table above. When assigning addresses to your endpoints, be
sure to follow these ranges.

The endpoint address is assigned in HDL through an additional 8-bit input port on the endpoint
instance. Example instantiation for each endpoint type are shown in the sections below.

okWireIn
In addition to the target interface pins, the okWireIn adds a single 16-bit output bus called EP_
DATAOUT[15:0]. The pins of this bus are connected to your design as wires and act as asyn-
chronous connections from FrontPanel components to your HDL.

When FrontPanel updates the Wire Ins, it writes new values to the wires, then updates them all at
the same time. Therefore, although the wires are asynchronous endpoints, they are all updated
at the same time on the host interface clock.

Signal Direction Description
EP_DATAOUT[15:0] Output Wire values output. (sent from host)

Verilog Instantiation:
okWireIn wire03 (ok1 => ok1, ok2 => ok2,
 .ep_addr(8’h03), .ep_dataout(ep03data));

VHDL Instantiation:
wire03 : okWireIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x“03”, ep_dataout => ep03data);

okWireOut
An okWireOut module adds a single 16-bit input bus called EP_DATAIN[15:0]. Signals on these
pins are read whenever FrontPanel updates the state of its wire values. In fact, all wires are cap-
tured simultaneously (synchronous to the host interface clock) and read out sequentially.

Signal Direction Description
EP_DATAIN[15:0] Input Wire values input. (to be sent to host)

Verilog Instantiation:
okWireOut wire21 (ok1 => ok1, ok2 => ok2,
 .ep_addr(8’h21), .ep_datain(ep21data));

VHDL Instantiation:
wire21 : okWireOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x“21”, ep_datain => ep21data);

34

FrontPanel User’s Manual

www.opalkelly.com

okTriggerIn
The okTriggerIn provides EP_CLK and EP_TRIGGER[15:0] as interface signals. The Trigger In
endpoint produces a single-cycle trigger pulse on any of EP_TRIGGER[15:0] which is synchro-
nized to the clock signal EP_CLK. Therefore, the single-cycle does not necessarily have to be a
single host interface cycle. Rather, the module takes care of crossing the clock boundary prop-
erly.

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_CLK Input Clock to which the trigger should synchronize.
EP_TRIGGER[15:0] Output Independent triggers from host.

Verilog Instantiation:
okTriggerIn trigIn53 (ok1 => ok1, ok2 => ok2,
 .ep_addr(8’h53), .ep_clk(clk2), .ep_trigger(ep53trig));

VHDL Instantiation:
trigIn53 : okTriggerIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”53”, ep_clk => clk2, ep_trigger => ep53trig);

okTriggerOut
The target may trigger the host using this module. EP_TRIGGER[15:0] contains 16 independent
trigger signals which are monitored with respect to EP_CLK. If EP_TRIGGER[x] is asserted for
the rising edge of EP_CLK, then that trigger will be set. The next time the host checks trigger
values, the triggers will be cleared.

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_CLK Input Clock to which the trigger is synchronized.
EP_TRIGGER[15:0] Input Independent triggers to host.

Verilog Instantiation:
okTriggerOut trigOut6A (.ti_clk(ticlk),
 .ti_control(ti_control), .ti_data(tidata),
 .ep_addr(8’h6a), .ep_clk(clk2), .ep_trigger(ep6Atrig));

VHDL Instantiation:
trigOut6A : okTriggerOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”6a”, ep_clk => clk2, ep_trigger => ep6Atrig);

okPipeIn
The okPipeIn module provides a way to move synchronous multi-byte data from the host to the
target. As usual, the host is the master and therefore the target must accept data as it is moved
through this pipe (up to 48 MHz). The EP_WRITE signal is an active high signal which is as-
serted when data is to be accepted by the target on EP_DATAOUT[15:0]. It is possible that
EP_WRITE be asserted for several consecutive cycles without deasserting. In such a case,
EP_DATAOUT[15:0] will be changing every clock.

35

FrontPanel User’s Manual

www.opalkelly.com

This somewhat simple Pipe In implementation requires that the target interface be very respon-
sive to incoming pipe data. If the target is able to keep up with the throughput, but needs to
handle data in a block fashion, coupling the okPipeIn with a FIFO (from the Xilinx CORE genera-
tor) is a good solution. Alternatively, an okBTPipeIn can be used.

The timing diagram below indicates how data is presented by the okPipeIn to user HDL. EP_
DATAOUT contains valid data for any clock cycle where EP_WRITE is asserted during the rising
edge of TI_CLK. Note that the transfer sends 4 words in this example. Although contrived, it is
important to note that EP_WRITE may deassert during the transfer. This will generally happen
with longer transfers (>256 words).

��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ����

D0 D1 D2 D3

TI_CLK

EP_WRITE

EP_DATAOUT

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAOUT[15:0] Output Pipe data output.
EP_WRITE Output Active high write signal. Data should be captured

when this signal is asserted.

Verilog Instantiation:
okPipeIn pipeIn9C (ok1 => ok1, ok2 => ok2,
 .ep_addr(8’h9c), .ep_dataout(ep9Cpipe), .ep_write(ep9Cwrite));

VHDL Instantiation:
pipeIn9C : okPipeIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”9c”, ep_dataout => ep9Cpipe, ep_write => ep9Cwrite);

okPipeOut
The okPipeOut module implements a simple version of the Pipe Out endpoint to move synchro-
nous multi-byte data from the target to the host. Because the host is master, all reads (on the
target side) occur at the host’s whim. Therefore, data must be provided whenever EP_READ is
asserted.

This simple implementation of a Pipe Out endpoint requires that the target interface be somewhat
responsive to host read requests. If the target is able to keep up with the throughput, but needs
to handle data in a block fashion, coupling the okPipeOut with a FIFO (from the Xilinx CORE
generator) is a good solution. Alternatively, an okBTPipeOut can be used.

The timing diagram below indicates how the user HDL needs to respond to EP_READ with
EP_DATAIN valid data. When EP_READ is asserted for the rising edge of TI_CLK, user HDL
must respond with valid EP_DATAIN on the next clock edge, subject to setup and hold times ap-
propriate for (TAS and TAH in the Spartan-3 CLB timing documentation). Of course, these times
are also subject to the particular routing and logic in your HDL implementation. Note that the
transfer sends 4 words in this example. Although contrived, it is important to note that EP_READ
may deassert during the transfer. This will generally happen with longer transfers (>256 words).

36

FrontPanel User’s Manual

www.opalkelly.com

��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ����

D0 D1 D2 D3

TI_CLK

EP_READ

EP_DATAIN

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAIN[15:0] Input Pipe data input.
EP_READ Output Active-high read signal. Data must be provided in the

cycle following as assertion of this signal.

Verilog Instantiation:
okPipeOut pipeOutA3 (ok1 => ok1, ok2 => ok2,
 .ep_addr(8’ha3), .ep_datain(epA3pipe), .ep_read(epA3read));

VHDL Instantiation:
pipeOutA3 : okPipeOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”a3”, ep_datain => epA3pipe, ep_read => epA3read);

okBTPipeIn
The Block-Throttled Pipe In module is similar to the okPipeIn module, but adds two signals,
EP_BLOCKSTROBE and EP_READY to handle block-level negotiation for data transfer. The
host is still master, but the FPGA controls EP_READY. When EP_READY is asserted, the host is
free to transmit a full block of data. When EP_READY is deasserted, the host will not transmit to
the module.

EP_READY could, for example, be tied to a level indicator on a FIFO. When the FIFO has a full
block of space available, it will assert EP_READY signifying that it can accept a full block trans-
fer.

��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ����

D0 D1 Dn-1Dn-2

TI_CLK

EP_READY

EP_BLOCKSTROBE

EP_WRITE

EP_DATAOUT

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAOUT[15:0] Output Pipe data output.
EP_WRITE Output Active-high write signal. Data should be captured

when this signal is asserted.
EP_BLOCKSTROBE Output Active-high block strobe. This is asserted for one

cycle just before a block of data is written.
EP_READY Input Active-high ready signal. Logic should assert this sig-

nal when it is prepared to receive a full block of data.

37

FrontPanel User’s Manual

www.opalkelly.com

Verilog Instantiation:
okBTPipeIn pipeIn9C (.ok1(ok1), .ok2(ok2)
 .ep_addr(8’h9c), .ep_dataout(ep9Cpipe), .ep_write(ep9Cwrite),
 .ep_blockstrobe(ep9Cstrobe), .ep_ready(ep9cready));

VHDL Instantiation:
pipeIn9C : okBTPipeIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”9c”, ep_dataout => ep9Cpipe, ep_write => ep9Cwrite,
 ep_blockstrobe => ep9Cstrobe, ep_ready => ep9cready);

okBTPipeOut
The Block-Throttled Pipe Out module is similar to the okPipeOut module, but adds two signals,
EP_BLOCKSTROBE and EP_READY to handle block-level negotiation for data transfer. The
host is still master, but the FPGA controls EP_READY. When EP_READY is asserted, the host is
free to read a full block of data. When EP_READY is deasserted, the host will not read from the
module.

EP_READY could, for example, be tied to a level indicator on a FIFO. When the FIFO has a full
block of data available, it will assert EP_READY signifying that a full block may be read from the
FIFO.

��� ��� ��� ��� ��� ��� ��� ��� ��� ���� ���� ���� ����

D0 D1 Dn-1Dn-2

N • Tclk

D2

TI_CLK

EP_READY

EP_BLOCKSTROBE

EP_READ

EP_DATAIN

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_DATAIN[15:0] Input Pipe data input.
EP_READ Output Active-high read signal. Data must be provided in the

cycle following as assertion of this signal.
EP_BLOCKSTROBE Output Active-high block strobe. This is asserted for one

cycle just before a block of data is read.
EP_READY Input Active-high ready signal. Logic should assert this sig-

nal when it is prepared to transmit a full block of data.

Verilog Instantiation:
okBTPipeOut pipeOutA3 (.ok1(ok1), .ok2(ok2)
 .ep_addr(8’ha3), .ep_datain(epA3pipe), .ep_read(epA3read),
 .ep_blockstrobe(epA3strobe), .ep_ready(epA3ready));

VHDL Instantiation:
pipeOutA3 : okBTPipeOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”a3”, ep_datain => epA3pipe, ep_read => epA3read,
 ep_blockstrobe => epA3strobe, ep_ready => epA3ready);

38

FrontPanel User’s Manual

www.opalkelly.com

okBufferedPipeIn
DEPRECATION NOTICE: The okBufferedPipeIn has been deprecated in FrontPanel-3. Now that
Xilinx includes the FIFO Core Generator with ISE WebPack (for free), the okBufferedPipes are
no longer required to fill the void. In all cases, an okPipe coupled to a FIFO Core is the preferred
choice.

The okBufferedPipeIn is a special implementation of a Pipe In which includes a FIFO to simplify
dataflow between the target and host. The FIFO is implemented as a 2047-word (2047-byte for
XEM3001v1) deep asynchronous block RAM FIFO. Because the FIFO is asynchronous, the two
ports can run with different clocks (TI_CLK for the target interface side and EP_CLK for the user-
logic side).

The buffered pipes are provided as one way to cross the clock boundary between the host in-
terface and your design’s clock, if they differ. Another simpler method would be to use a double
buffered technique.

Some negotiation will be required between the host, buffered pipe, and user design to assure that
FIFO overruns and underruns do not occur. This would typically be done with wires or triggers to
indicate to the host when the FIFO can accept additional data.

The FIFO used in this module is based on the Xilinx asynchronous FIFO presented in XAPP131.
It has been slightly modified to accommodate the larger BRAM size of the Spartan-3. Please
refer to the original application note for detailed FIFO usage and timing information.

Signal Direction Description
EP_ADDR[7:0] Input Endpoint address.
EP_CLK Input Endpoint clock.
EP_RESET Input Resets the endpoint FIFO.
EP_READ Input When asserted, advances the FIFO read pointer to the

next datum. The next datum will be available during
the following clock cycle.

EP_DATAOUT[15:0] Output Pipe data output.
EP_FULL Output Asserted when the endpoint FIFO is full.
EP_EMPTY Output Asserted when the endpoint FIFO is empty.
EP_STATUS[3:0] Output Indicates the ‘fullness’ of the FIFO in 16 levels (1/16

full, 1/8 full, and so on).

Verilog Instantiation:
okBufferedPipeIn pipeIn87 (.ok1(ok1), .ok2(ok2)
 .ep_addr(8’h87),
 .ep_clk(clk2), .ep_reset(reset), .ep_read(pipeRead),
 .ep_dataout(pipeData), .ep_full(pipeFull), .ep_empty(pipeEmpty),
 .ep_status(pipeStatus));

VHDL Instantiation:
pipeIn87 : okBufferedPipeIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”87”,
 ep_clk => clk2, ep_reset => reset, ep_read => pipeRead,
 ep_dataout => pipeData, ep_full => pipeFull, ep_empty => pipeEmpty,
 ep_status => pipeStatus);

39

FrontPanel User’s Manual

www.opalkelly.com

okBufferedPipeOut
DEPRECATION NOTICE: The okBufferedPipeIn has been deprecated in FrontPanel-3. Now that
Xilinx includes the FIFO Core Generator with ISE WebPack (for free), the okBufferedPipes are
no longer required to fill the void. In all cases, an okPipe coupled to a FIFO Core is the preferred
choice.

The okBufferedPipeOut is a special implementation of a Pipe Out which includes a FIFO to sim-
plify dataflow between the target and host. The FIFO is implemented as a 2047-word (2047-byte
for XEM3001v1) deep asynchronous block RAM FIFO. Because the FIFO is asynchronous, the
two ports can run with different clocks (TI_CLK for the target interface side and EP_CLK for the
user-logic side).

The buffered pipes are provided as one way to cross the clock boundary between the host in-
terface and your design’s clock, if they differ. Another simpler method would be to use a double
buffered technique.

Some negotiation will be required between the host, buffered pipe, and user design to assure that
FIFO overruns and underruns do not occur. This would typically be done with wires or triggers to
indicate to the host when data is available from the FIFO.

The FIFO used in this module is based on the Xilinx asynchronous FIFO presented in XAPP131.
It has been slightly modified to accommodate the larger BRAM size of the Spartan-3. Please
refer to the original application note for detailed FIFO usage and timing information.

Signal Direction Description
EP_ADDR[15:0] Input Endpoint address.
EP_CLK Input Endpoint clock.
EP_RESET Input Resets the endpoint FIFO.
EP_WRITE Input When asserted, writes the data on EP_DATAIN to

the FIFO and advances the write pointer to the next
datum.

EP_DATAIN[15:0] Input Pipe data input.
EP_FULL Output Asserted when the endpoint FIFO is full.
EP_EMPTY Output Asserted when the endpoint FIFO is empty.
EP_STATUS[3:0] Output Indicates the ‘fullness’ of the FIFO in 16 levels (1/16

full, 1/8 full, and so on).

Verilog Instantiation:
okBufferedPipeOut pipeOuta9 (.ok1(ok1), .ok2(ok2)
 .ep_addr(8’ha9),
 .ep_clk(clk2), .ep_reset(reset), .ep_write(pipeWrite),
 .ep_datain(pipeData), .ep_full(pipeFull), .ep_empty(pipeEmpty),
 .ep_status(pipeStatus));

VHDL Instantiation:
pipeOuta9 : okBufferedPipeOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”a9”,
 ep_clk => clk2, ep_reset => reset, ep_write => pipeWrite,
 ep_datain => pipeData, ep_full => pipeFull, ep_empty => pipeEmpty,
 ep_status => pipeStatus);

40

FrontPanel User’s Manual

www.opalkelly.com

41

FrontPanel User’s Manual

www.opalkelly.com

Using the FrontPanel Application

FrontPanel provides essential functionality to make using XEM devices easy and intuitive. This
functionality includes downloading FPGA configuration files and configuring the on-board periph-
erals for use in a design, but it also extends to loading FrontPanel “profiles” to control and inter-
face to your design.

The FrontPanel interface has a simple presentation as shown below:

Available XEM devices are shown to the right. The device choices are automatically updated as
USB devices are added and removed from the bus. The icons to the left allow you to download
an FPGA configuration, configure the on-board PLL, and load a FrontPanel profile, respectively.
If no XEM device is available, downloading and PLL configuration will not be allowed and their
icons will be disabled.

42

FrontPanel User’s Manual

www.opalkelly.com

In the lower section of the window, a Component List displays the currently registered FrontPanel
components. This list may be helpful for setting up FrontPanel profiles, or writing the HDL for
your project.

At the bottom is a status bar which displays the current FrontPanel status. The icon at the right of
the status bar indicates if the current FPGA design is “FrontPanel-enabled.” If the current design
has an instance of okHostInterface, the icon will be in color. If no instance is detected, the icon is
displayed in grayscale.

Selecting the Active Device
As XEM devices are added and removed from the USB, the “Active devices” combobox will be
updated. You may select any one of these devices for each instance of FrontPanel. The select-
ed device then becomes the target for any FPGA download and PLL configuration operations. In
addition, any loaded FrontPanel profiles will communicate with this target device.

Device Identifier String
Each XEM device contains an identifier string stored in the on-board EEPROM. This identifier
string is displayed in brackets in the “Available Devices” list so that you know which device is cur-
rently selected.

You can change the device identifier string at any time by navigating to:

FrontPanel → Set Device ID...

FPGA Configuration Download
To download an FPGA configuration file to the current target device, simply click on the icon
shown to the left. A file selector dialog will appear from which you can choose the Xilinx bitfile
to download. If you accept the file, the download will proceed immediately. Four things happen
when you configure the device:

1. The on-board PLL is configured with the parameters stored in EEPROM.

2. The FPGA is reset and a programming sequence is initiated.

3. The configuration data is downloaded to the FPGA.

4. The FPGA is checked to verify that the configuration was successful (DONE is asserted).

Once complete, the FPGA is now configured and “running” with the new design.

Drag and Drop
As an alternative to clicking the download icon and using a file selector to choose the configura-
tion file, you can simply drag a Xilinx bitfile onto the icon and release it. FrontPanel then pro-
ceeds as if you had just chosen the file in the file selector.

PLL Configuration (CY22150)
The on-board PLL is available to the USB microcontroller as an I2C peripheral. Through
FrontPanel, you can configure the PLL using the PLL Configuration Dialog which is opened by
clicking on the icon to the left. When you do so, the current PLL configuration is read and the
following dialog appears:

43

FrontPanel User’s Manual

www.opalkelly.com

As you make changes in the PLL Configuration Dialog, the output frequencies are automatically
updated to indicate how the outputs will behave with the current selections.

Details of the PLL configuration are available in Cypress documentation for the CY22150. A brief
description of the parameters follows.

VCO Setup
The CY22150 contains a single PLL which is used as the source to a divider network which then
produces the signals at the output. Because of this, all outputs are referenced from the same
PLL. The VCO frequency is produced by dividing the reference frequency (fixed at 48 MHz for
the XEM3001) by Q and multiplying by P. Cypress specifies that the VCO frequency should be
kept between 250 kHz and 400 MHz for reliable operation.

The valid range for P is 8 to 2055. The valid range for Q is 2 to 129.

Divider #1 and #2
Two divide-by-N blocks are available, DIV1N and DIV2N, each with a range from 4 to 127. The
source for each divider can either be the VCO or the input reference. The divider outputs are
then used to generate the resulting output signal.

Outputs
Each of the six outputs can have a different source as indicated by the combobox. The choice
of this source directly determines the clock frequency for that output. Each output can then be
independently enabled or disabled using the checkboxes to the right.

EEPROM Read
The XEM stores the microcontroller bootcode in a small serial EEPROM which is also used to
store a single set of PLL parameters. These parameters are loaded before each FPGA configu-
ration so that valid clock signals are presented to the FPGA when it comes out of configuration.

The PLL Configuration Dialog allows you to read and write this section of EEPROM by using the
buttons at the lower left. When you click the button labelled “EEPROM Read,” the stored PLL
configuration is read from the EEPROM and the PLL Configuration Dialog is updated to represent
these values. The PLL is not re-configured yet. To configure the PLL with these values, you
must press “Apply.”

44

FrontPanel User’s Manual

www.opalkelly.com

EEPROM Write
The current configuration represented in the PLL Configuration Dialog (not the current PLL con-
figuration) is written to the EEPROM when you press this button. The next time a configuration
file is downloaded to the FPGA, this configuration will be loaded into the PLL.

Apply
Any time you change a setting in the PLL Configuration Dialog or load the EEPROM settings, the
values change in the dialog, but do not affect the actual PLL on-board. To make the changes
take effect, you must press the “Apply” button.

Example PLL Configurations
The table below lists several example frequencies and the PLL settings required to generate that
output. If more than one frequency is required for the FPGA, remember that the PLL only has
a single VCO, so the outputs must be generated from a single source and (possibly) multiple
divider values.

Output
Frequency

P Q VCO
Frequency

DIV1N Source

100 MHz 400 48 400 MHz 4 DIV1CLK/DIV1N
80 MHz 20 4 240 MHz N/A DIV1CLK/3
75 MHz 300 48 300 MHz N/A DIV2CLK/4
66.66 MHz 400 48 400 MHz 6 DIV1CLK/DIV1N
50 MHz 400 48 400 MHz 8 DIV1CLK/DIV1N
15 MHz 20 4 240 MHz 16 DIV1CLK/DIV1N

Of course, many other configurations are possible including those with multiple output frequen-
cies. Please see the specific PLL datasheet for more information.

PLL Configuration (CY22393)
The XEM3010 product includes a Cypress CY22393 PLL which has a multi-PLL configuration
and is therefore more capable than the CY22150. Configuration for the Cypress CY22393 is also
available through the FrontPanel API and the FrontPanel Application. Please refer to the Cy-
press datasheet for parameter details on the CY22393.

45

FrontPanel User’s Manual

www.opalkelly.com

Loading a FrontPanel Profile
A FrontPanel “Profile” is an XML file with the extension .XFP. A new profile may be loaded at any
time, but only one profile is available at any time. That is, the previous profile is unloaded before
loading in the new one. You can load a new profile by clicking on the button shown at the left. A
file selector dialog will open asking you to select a profile.

When a selection is confirmed, the profile is loaded and the first
panel is displayed. If there are more panels in the profile, they will
not be displayed. However, an entry is made in the View menu
for each panel in the profile. To open another panel, simply select
that panel’s label from the menu.

Drag and Drop
As an alternative to opening the file dialog to load a new panel, you can drag an XFP file and
drop it on the button. This will load the profile and open the first panel just like opening the file
through the file selector.

Preferences
The Preferences dialog (shown below) can be shown by navigating under the FrontPanel menu:

FrontPanel → Preferences...

Wire Update Rate
Wire Out enpoints are updated using timed polling by the FrontPanel software. This update rate
is determined by your design’s needs (how quickly you need to see wire changes) as well as the
performance of your PC. On an Athlon 2100+, even the fastest update rate places minimal (<2%)
load on the CPU.

Configure PLL Before FPGA Download
This option determines whether an FPGA download configures the PLL prior to download. In
most cases, this is the desired behavior so that a valid clock is available when the FPGA comes
out of the configuration state. Sometimes, however, you may want to keep the current PLL set-
tings in effect and not update the EEPROM.

46

FrontPanel User’s Manual

www.opalkelly.com

Show Panels in Taskbar
When unchecked, each FrontPanel “panel” is displayed in a toolbox window which does not reg-
ister with the taskbar. When checked, these panels will register with the taskbar so that you can
easily select a particular panel.

Enable Asynchronous Transfers
Asynchronous transfers allow USB transfer requests to be queued and sequenced by the oper-
ating system. This decreases software overhead and increases overall throughput. However,
many Windows 2000-based machines have problems with asynchronous transfers and may not
communicate with the FPGA properly when this feature is enabled.

You may find that you need to disable asynchronous transfers before any FPGA communication.
Otherwise, the communication link may become “tainted” and will not work. Therefore, if you
experience problems with Windows 2000 and FrontPanel communication, we advise that you dis-
able asynchronous transfers before communicating with your board.

From within your own software, there is an API method to control this feature.

47

FrontPanel User’s Manual

www.opalkelly.com

Component XML

FrontPanel user interfaces (“panels”) are constructed from “components” - graphical devices
that interface to your design or serve some decorative function. The interfaces are described in
FrontPanel “profiles” which are written in a text file format known as XML. The XML profile con-
tains structure which defines where each component exists on a panel as well as the connections
that component has to your FPGA design. FrontPanel XML files end with the extension XFP.

XML
XML stands for eXtensible Markup Language and is used in documents containing structured
information. The syntax for XML is defined at http://www.w3.org/TR/WD-xml. For its part, XML
does not define the content but rather how the content is organized. FrontPanel uses XML
because the standard is well-known and there are many tools available to read, write, edit, and
parse the content. It is also easily human-readable so you can read and write FrontPanel profiles
in a text-editor with ease.

A complete tutorial of XML is beyond the scope of this text. What is provided here is a basic tuto-
rial of the aspects of XML required to compose FrontPanel profiles. Please refer to the enormous
on-line resources available for a complete understanding of XML, its applications, and the tools
available for working with XML.

Basic Structure for FrontPanel
The basic FrontPanel XFP file has the following structure:

http://www.w3.org/TR/WD-xml

48

FrontPanel User’s Manual

www.opalkelly.com

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!-- A basic FrontPanel Example -->

<resource version=”2.3.0.1”>
<object class=”okPanel” name=”panel1”>
 <title>Main Panel Title</title>
 <size>180,70</size>

 ... Main Panel component XML will go here ...

</object>
</resource>

This simple example defines a single panel. Note the first line starting with <?xml...> and the <re-
source version=”2.3.0.1”> ... </resource> are required content in any FrontPanel profile.

Comments
Comments in XML can appear anywhere outside of normal markup. They have the form as
shown below. Note that the string “--” is not allowed within a comment and that the comment
must end with exactly two “-” (hyphen) characters and the “>” character.

<!-- This is some comment text. -->

<!-- This text is NOT allowed because it is incorrectly terminated: --->

Start-Tags and End-Tags
The start- and end-tags enclose an XML element. In the listing below, the XML element is an
“object” and its content is defined between the first line (Start-Tag) and last line (End-Tag). This
particular element contains a child element, “label” which also has (as a requirement) a Start-Tag
and an End-Tag.

<object class=”okStaticText”>
 <label>Hello there</label>
</object>

The “object” element in the above example contains one attribute, “class” which is set to “okStat-
icText”. In FrontPanel, all of the graphical components are “object” elements with an attribute
which defines what type of component it is.

Case Sensitivity
All XML component types and value names are currently case sensitive. That is, “okPushButton”
is not a valid component name, but “okPushbutton” is.

49

FrontPanel User’s Manual

www.opalkelly.com

Element Data Types
All FrontPanel components have sub-elements which specify certain properties of the compo-
nent. These sub-elements are listed with each component and take a certain data type as their
value. The various data types available along with an example and description are shown in the
table below.

Type Example Description
POSITION 50,75 Position represented as: x,y in pixels.
SIZE 40,80 Size represented as: width,height in pixels. Many controls

will accept -1 as a width and/or height and automatically
compute the best value.

TEXT Hello World A text string. No quotes are necessary.
HEX BYTE 0x3F An 8-bit hexadecimal number. The leading “0x” is required.
NUMBER 7 Numeral, range is determined by object type.
COLOR #2040A3 24-bit hexadecimal HTML color format #RRGGBB.
STYLE ROUND The STYLE type is object-dependent and contains one or

more styles which can be or’ed together using the pipe (“|”)
symbol.

Component Types
The following figure shows most of the FrontPanel components available. Some components do
not have a corresponding GUI representation. This image is taken from the Controls Sample.

okStaticText

okStaticBox

okPushbutton

okHex

okSlider

okTriggerButton

okToggleButton

okToggleCheck

okDigitEntry
okPanel

okLED

50

FrontPanel User’s Manual

www.opalkelly.com

okStaticText
This is a simple control to display static text within a panel.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text.

XML Example:
<object class=”okStaticText”>
 <label>Disable</label>
 <position>90,25</position>
 <size>60,20</size>
</object>

okStaticBox
This is a simple control to display static text within a panel. It also displays a box which is helpful
to distinguish parts of a control panel.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text.

XML Example:
<object class=”okStaticBox”>
 <label>Disable</label>
 <position>90,25</position>
 <size>60,20</size>
</object>

okPushbutton (Wire In)
This component models a physical pushbutton and connects to a Wire In endpoint. By default,
the pushbutton is ‘unpressed’ and the corresponding wire is deasserted (logic 0). When pressed,
the corresponding wire is asserted (logic 1). The pushbutton does not hold its state -- that is, to
maintain a logic 1, you have to hold the pushbutton in its pressed state.

For an alternative component that does maintain its state, see the okToggleButton.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).

51

FrontPanel User’s Manual

www.opalkelly.com

XML Example:
<object class=”okPushbutton”>
 <label>Disable</label>
 <position>90,25</position>
 <size>60,20</size>
 <endpoint>0x00</endpoint>
 <bit>1</bit>
 <tooltip>Momentarily disable counter #1</tooltip>
</object>

okToggleButton (Wire In)
The okToggleButton is similar to the okPushbutton in that it connects to a Wire In endpoint. In
contrast to the okPushbutton, however, this component maintains its state just as a physical
toggle switch would. When unpressed, the corresponding wire is deasserted (logic 0). When
pressed, the corresponding wire is asserted (logic 1).

Note: This component is not presently available under OS X.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).

XML Example:
<object class=”okToggleButton”>
 <label>1</label>
 <position>10,10</position>
 <size>20,20</size>
 <endpoint>0x00</endpoint>
 <bit>0</bit>
</object>

okToggleCheck (Wire In)
The okToggleCheck attaches to a Wire In component and behaves much like the okToggleButton
except that graphically it appears as a checkbox with the label text on the right. When un-
checked, the corresponding wire is unasserted (logic 0). When checked, the corresponding wire
is asserted (logic 1).

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels. If no size is specified, the component is

automatically sized.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).

52

FrontPanel User’s Manual

www.opalkelly.com

XML Example:
<object class=”okToggleCheck”>
 <label>Autocount.</label>
 <position>20,135</position>
 <endpoint>0x00</endpoint>
 <bit>2</bit>
 <tooltip>Enable autocount.</tooltip>
</object>

okDigitEntry (Wire In)
This component allows a more flexible way to convey numerical information to your design. The
okDigitEntry attaches to one or more Wire In endpoints and allows the user to enter a numeri-
cal value using the mouse and/or keyboard. The bounds on the value are set in the component
properties.

The okDigitEntry component is designed to allow fast entry through either the mouse or key-
board. Using the mouse, you can hover over any digit and change its value using the scrollwheel.
Likewise, by pressing a number on the keyboard when a digit is highlighted, that particular digit is
changed and the highlight moves to the next digit on the right.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In. The entry

will span multiple consecutive endpoints as necessary.
bit NUMBER This bit on the endpoint is the LSB for the entry.
minvalue NUMBER The minimum allowed value in the entry.
maxvalue NUMBER The maximum allowed value in the entry.
raidx NUMBER Numerical radix of the entry (2, 8, 10 [default], or 16).
value NUMBER The default value for the entry.

XML Example:
<object class=”okDigitEntry”>
 <position>5,215</position>
 <size>200,30</size>
 <tooltip>Sets the integer divider.</tooltip>
 <minvalue>0</minvalue>
 <maxvalue>16777215</maxvalue>
 <value>49837</value>
 <endpoint>0x07</endpoint>
 <bit>0</bit>
</object>

53

FrontPanel User’s Manual

www.opalkelly.com

okSlider (Wire In)

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).
minvalue NUMBER The minimum value on the slider.
maxvalue NUMBER The maximum value on the slider.
value NUMBER Default value taken when the profile is loaded.
style STYLE VERTICAL - Displays the slider vertically.

HORIZONTAL - Displays the silder horizontally.
SHOWLABELS - Show min/max/value labels.

XML Example:
<object class=”okSlider”>
 <position>310,5</position>
 <size>25,100</size>
 <label>Hi</label>
 <tooltip>4-bit vertical slider.</tooltip>
 <style>VERTICAL|SHOWLABELS</style>
 <minvalue>0</minvalue>
 <maxvalue>15</maxvalue>
 <value>3</value>
 <endpoint>0x04</endpoint>
 <bit>4</bit>
</object>

okCombobox (Wire In)
The okCombobox allows you to relate numerical values on a Wire In endpoint to text selections
in a traditional combobox. You specify the text items and a corresponding value. When that text
item is selected, the Wire In is updated with the value.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).
options XML This field is further broken down into ‘item’ tags as shown in

the example below. Each item tag is inserted in order into
the combobox.

Each item tag has a ‘value’ property which specifies the
Wire In value to be used for each item selection.

54

FrontPanel User’s Manual

www.opalkelly.com

XML Example:
<object class=”okCombobox”>
 <position>180,160</position>
 <size>100,-1</size>
 <options>
 <item value=”0”>Test mode</item>
 <item value=”1”>Standard mode</item>
 <item value=”2”>Block floating point mode</item>
 </options>
 <endpoint>0x01</endpoint>
 <bit>1</bit>
</object>

okLED (Wire Out)
This component implements a simple on/off indicator analagous to a physical LED. It is attached
to a specified bit on a specified Wire Out endpoint and monitors the status of that bit. Both the
style (round or square) and color (a 24-bit RGB value) may be specified.

The LED is on when the Wire Out is asserted (logic 1) and off when the Wire Out is deasserted
(logic 0). When on, the LED is displayed in the specified color. When off, the LED is darkened

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text. The optional ‘align’ property can be “left | right |

top | bottom” and specifies the text alignment relative to the
LED.

tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire Out.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).
color COLOR The LED “on” color. The “off” color is automatically com-

puted as a darker version of this color.
style STYLE ROUND - Displays a round LED.

SQUARE - Displays a square LED.

XML Example:
<object class=”okLED”>
 <position>135,50</position>
 <size>25,25</size>
 <label align=”top”>1</label>
 <style>SQUARE</style>
 <color>#00ff00</color>
 <endpoint>0x20</endpoint>
 <bit>1</bit>
</object>

okHex (Wire Out)
The okHex component displays four bits of a Wire Out endpoint as a hexadecimal digit. Multiple
okHex components may be attached to the same Wire Out endpoint. For example, to display an
entire byte in hex, you could display two okHex components side-by-side. Attach the left compo-
nent to bit 4 and the right component to bit 0.

55

FrontPanel User’s Manual

www.opalkelly.com

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire Out.
bit NUMBER Least-significant bit to which this component addresses.

The hex value comes from the specified bit and its three
neighbors to the left. For example, if bit=2, the hex value
will be taken from bits 5:2.

color COLOR Sets the numeral color.

XML Example:
<object class=”okHex”>
 <label>x[3:0]</label>
 <position>217,22</position>
 <size>35,50</size>
 <endpoint>0x20</endpoint>
 <bit>0</bit>
 <tooltip>Counter #1 (low nibble)</tooltip>
</object>

okDigitDisplay (Wire Out)
This component allows a flexible way to display numerical information to your design. The ok-
DigitDisplay is simply a read-only (Wire Out) version of the okDigitEntry. Just like the okDigitEn-
try, its endpoint attachment can span multiple Wire Out endpoints as necessary (according to the
‘maxvalue’ setting).

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Wire Out. The dis-

play will span multiple consecutive endpoints as necessary.
bit NUMBER This bit on the endpoint is the LSB for the display.
maxvalue NUMBER The maximum allowed value in the display.
radix NUMBER Numerical radix of the entry (2, 8, 10 [default], or 16).

XML Example:
<object class=”okDigitDisplay”>
 <position>5,215</position>
 <size>200,30</size>
 <maxvalue>65535</maxvalue>
 <radix>16</radix>
 <endpoint>0x20</endpoint>
 <bit>0</bit>
</object>

56

FrontPanel User’s Manual

www.opalkelly.com

okGauge (Wire Out)
The okGauge component is used to display a bar-type indicator horizontally or vertically on the
panel. It connects to a Wire Out endpoint and allows a maximum range of 65535 (all 16-bits of a
Wire Out). It appropriately selects the proper number of bits for smaller ranges.

Element Type Description
position POSITION Position of the top-left corner.
size SIZE Size in pixels.
tooltip TEXT Tooltip text.
style TEXT Either “HORIZONTAL” or “VERTICAL”
endpoint HEX BYTE Endpoint address for the corresponding Wire Out.
bit NUMBER This bit on the endpoint is the LSB for the display.
range NUMBER The maximum allowed value in the display.

XML Example:
<object class=”okGauge”>
 <position>120,235</position>
 <size>150,15</size>
 <style>HORIZONTAL</style>
 <range>65535</range>
 <endpoint>0x33</endpoint>
 <bit>0</bit>
</object>

okTriggerButton (Trigger In)
The okTriggerButton appears identical to the okPushbutton but connects to a Trigger In endpoint.
The trigger is activated when the button is pushed (rather than when the button is released).

You may wish to denote that a particular button is a trigger by surrounding the label with hyphens.
In the example below, the button label is “- Reset -” to make the button appear different from an
okPushbutton.

Element Type Description
position POSITION Position of the top-left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Trigger In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).

XML Example:
<object class=”okTriggerButton”>
 <label>- Reset -</label>
 <position>20,110</position>
 <size>60,20</size>
 <endpoint>0x40</endpoint>
 <bit>0</bit>
 <tooltip>Reset Counter #2</tooltip>
</object>

57

FrontPanel User’s Manual

www.opalkelly.com

okTriggerSound (Trigger Out)
The okTriggerSound does not physically appear on a virtual panel. Instead, it is attached to the
panel and is activated when a trigger out is activated. Upon activation, it rings the system bell as
a brief audible notification of a trigger out event. An optional WAV file may be specified that will
play instead of the system bell.

Element Type Description
endpoint HEX BYTE Endpoint address for the corresponding Trigger In.
bit NUMBER Bit to which this component addresses (0=LSB, 15=MSB).
label TEXT Label text, shown in the FrontPanel component list. (OP-

TIONAL)
soundfile FILENAME Filename of a WAV file to be played upon triggering. (OP-

TIONAL)

XML Example:
<object class=”okTriggerSound”>
 <endpoint>0x63</endpoint>
 <bit>3</bit>
 <label>Transfer complete trigger.</label>
 <soundfile>c:/Windows/Media/chimes.wav</soundfile>
</object>

okTriggerLog (Trigger Out)
okTriggerLog displays specified Trigger Out events along with a user-specified text message in
list form. Each trigger item within the list is stamped with the time (hh:mm:ss) of the occurrance.

Element Type Description
position POSITION Position of the top-left corner.
size SIZE Size in pixels.
trigger XML Adds a message to be entered in the log when a trigger

event occurs. The XML contains the ‘endpoint’, ‘bit’, and
‘message’ tags as shown in the example below.

XML Example:
<object class=”okTriggerLog”>
 <position>5,290</position>
 <size>350,100</size>
 <trigger>
 <endpoint>0x60</endpoint><bit>1</bit>
 <message>Your laundry is done.</message>
 </trigger>
 <trigger>
 <endpoint>0x61</endpoint><bit>0</bit>
 <message>Elvis (the cat) has left the building.</message>
 </trigger>
</object>

okTriggerMessage (Trigger Out)
okTriggerMessage displays a brief text message, similar to an okStaticText display, when a par-
ticular trigger occurs. Similar to okTriggerLog, you can setup a variety of messages to be dis-
played in the same area when any of a number of trigger outs occur.

58

FrontPanel User’s Manual

www.opalkelly.com

Element Type Description
position POSITION Position of the top-left corner.
size SIZE Size in pixels.
style STYLE Acceptable border styles are: (none means no border)

 SIMPLE_BORDER
 RAISED_BORDER
 SUNKEN_BORDER
Acceptable text styles are:
 ALIGN_LEFT (default)
 ALIGN_RIGHT
 ALIGN_CENTER

trigger XML Adds a message to be displayed when a trigger event
occurs. The XML contains ‘endpoint’, ‘bit’, ‘delay’, and
‘message’ tags as shown in the example below. The ‘delay’
parameter specifies an optional delay (in seconds), after
which the message will disappear.

XML Example:
<object class=”okTriggerMessage”>
 <position>5,290</position>
 <size>200,20</size>
 <style>RAISED_BORDER|ALIGN_CENTER</style>
 <trigger>
 <endpoint>0x60</endpoint><bit>1</bit>
 <message>Your laundry is done.</message>
 <delay>0.5</delay>
 <background>#ff0000</background>
 <foreground>#ffffff</foreground>
 </trigger>
 <trigger>
 <endpoint>0x61</endpoint><bit>0</bit>
 <message>Elvis (the cat) has left the building.</message>
 </trigger>
</object>

okFilePipe (Pipe In, Pipe Out, Trigger In)
This component provides simple binary file transfer capability through the use of Pipe In or Pipe
Outs. The type (In or Out) is automatically determined by the endpoint address. The component
appears as a pushbutton on your panel that can be clicked to initiate the transfer.

If no filename is provided, the user will be prompted with a File Dialog to select an appropriate
input or output file. If a filename is provided for Pipe In, but the file does not exist, the user will
also be prompted.

In the case of a Pipe In, the filename parameter provides an input file. The entire contents of the
file are transferred to the Pipe In. The transfer proceeds in chunks of 64kB until the entire file has
been transferred.

In the case of a Pipe Out, a length parameter must be provided to tell FrontPanel how many
bytes to read from the FPGA. The transfer proceeds in chunks of 64kB until the full length has
been read and stored.

59

FrontPanel User’s Manual

www.opalkelly.com

In both cases, an optional Start Trigger and optional Done Trigger are available. The Start Trig-
ger will be activated just before the transfer initiates. The Done Trigger is activated after the
transfer completes. These triggers can be used as notification events within your hardware.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text, shown inside the button.
tooltip TEXT Tooltip text.
endpoint HEX BYTE Endpoint address for the corresponding Pipe In or Pipe

Out.
filename TEXT Optional filename to read or write. If not provided, the user

will be prompted.
length NUMBER For Pipe Out transfers, the length (in bytes) to read from

the Pipe Out and store in the file.
append If present, an output file will be appended if it already ex-

ists.
starttrigger XML Describes the parameters of an optional Start Trigger (end-

point and bit).
donetrigger XML Describes the parameters of an optional Done Trigger (end-

point and bit).

XML Example:
<object class=”okFilePipe”>
 <label>Pipe Out</label>
 <position>20,53</position>
 <size>60,20</size>
 <endpoint>0xa0</endpoint>
 <length>5000</length>
 <tooltip>Read a file from Pipe 0xA0</tooltip>
 <append />
 <starttrigger><endpoint>0x40</endpoint><bit>0</bit></starttrigger>
 <donetrigger><endpoint>0x40</endpoint><bit>1</bit></donetrigger>
</object>

okPLL22150
This component provides an XML method to program the on-board PLL. When provided with a
“label” parameter, this component becomes a pushbutton on the panel GUI. When that button
is pressed, the PLL is configured with the given parameters. This allows you to specify multiple
PLL configuration and provide multiple buttons to access them without going through the PLL
dialog. A convenient tooltip lists the VCO and output frequencies for the configuration.

When the component does not have the “label” parameter, this configuration is loaded to the PLL
when the profile is loaded. It is not stored to EEPROM and the component does not create a GUI
button. The only way to reconfigure the PLL (even after a new FPGA configuration file is loaded)
is to reload the profile.

Note that this element is ignored if the target device does not have a CY22150 PLL.

60

FrontPanel User’s Manual

www.opalkelly.com

Element Type Description
position POSITION Position of the top left corner. (OPTIONAL)
size SIZE Size in pixels. (OPTIONAL)
label TEXT Label text, shown inside the button. (OPTIONAL)
p NUMBER VCO P multiplier. [8..2055]
q NUMBER VCO Q divider. [2..129]
divider1
divider2

NUMBER Divider 1 N value. [4..127]
The parameter “source” is a string that represents the
source of the divider:
“ref” - The reference (48 MHz) is used.
“vco” - The VCO frequency (48 * P / Q) is used.

output0
output1
...
output5

STRING This string is either “on” or “off” and turns the output on or
off. The parameter “source” is a string that represents the
source for the output:
“ref” - Use the reference (48 MHz).
“div1byn” - Use divider 1 source divided by divider 1 N.
“div1by2” - Use divider 1 source divided by 2.
“div1by3” - Use divider 1 source divided by 3.
“div2byn” - Use divider 2 source divided by divider 2 N.
“div2by2” - Use divider 2 source divided by 2.
“div2by4” - Use divider 2 source divided by 4.

XML Example:
<object class=”okPLL22150”>
 <label>PLL1 Configuration</label>
 <position>170,5</position>
 <size>100,15</size>
 <p>400</p>
 <q>48></q>
 <divider1 source=”vco”>8</divider1>
 <output0 source=”div1byn”>on</output0>
</object>

okPLL22393
This component provides an XML method to program the on-board PLL. When provided with a
“label” parameter, this component becomes a pushbutton on the panel GUI. When that button
is pressed, the PLL is configured with the given parameters. This allows you to specify multiple
PLL configuration and provide multiple buttons to access them without going through the PLL
dialog. A convenient tooltip lists the VCO and output frequencies for the configuration.

When the component does not have the “label” parameter, this configuration is loaded to the PLL
when the profile is loaded. It is not stored to EEPROM and the component does not create a GUI
button. The only way to reconfigure the PLL (even after a new FPGA configuration file is loaded)
is to reload the profile.

Note that this element is ignored if the target device does not have a CY22393 PLL. Also note
that the convention here is to label PLLs and outputs as 0-indexed (0, 1, 2, ...) rather than in-
dexed from 1 as the Cypress documentation does.

61

FrontPanel User’s Manual

www.opalkelly.com

Element Type Description
position POSITION Position of the top left corner. (OPTIONAL)
size SIZE Size in pixels. (OPTIONAL)
label TEXT Label text, shown inside the button. (OPTIONAL)
pll0
pll1
pll2

none This parameter has no content, but does have the following
properties:
P - Specifies the P multiplier for the PLL. [6..2053]
Q - Specifies the Q divider for the PLL. [2.257]

output0
output1
...
output4

STRING This string is either “on” or “off” and turns the output on or
off.
The property “source” is a string that represents the source
for the output:
“ref” - Use the reference (48 MHz).
“pll0_0” - PLL ouput 0 with 0˚ phase shift.
“pll0_180” - PLL ouput 0 with 180˚ phase shift.
“pll1_0” - PLL ouput 1 with 0˚ phase shift.
“pll1_180” - PLL ouput 1 with 180˚ phase shift.
“pll2_0” - PLL ouput 2 with 0˚ phase shift.
“pll2_180” - PLL ouput 2 with 180˚ phase shift.

The property “divider” specifies the integer divider for the
output. [1..127] for outputs 0..3 and [2,3,4] for output 4.

XML Example:
<object class=”okPLL22393”>
 <label>PLL1 Configuration</label>
 <position>170,5</position>
 <size>100,15</size>
 <pll0 p=”400” q=”48”/>
 <pll1 p=”397” q=”43”/>
 <output0 source=”pll0_0” divider=”8”>on</output0>
 <output1 source=”pll1_180” divider=”16”>on</output0>
</object>

okKeyPanel (Wire In, Trigger In)
The okKeyPanel component allows keyboard input to be captured and mapped to selected Wire
In and Trigger In endpoints. Multiple okKeyPanels may be instantiated on the same okPanel al-
lowing the same keyboard events to map to different behaviors depending on which okKeyPanel
is active.

The okKeyPanel appears on a panel as a simple box with a text label within. When the mouse is
over the component, it changes color to indicate that it is active. When active, keyboard events
are captured and mapped to HDL endpoints according to the XML description. Three behaviors
are available: KeyButton, KeyToggle, and KeyTrigger.

KeyButton
The KeyButton works like a pushbutton. The Wire In is asserted when the key is pressed and
deasserted when the key is released.

62

FrontPanel User’s Manual

www.opalkelly.com

KeyToggle
The KeyButton is like a toggle button. On the key downstroke, the Wire In is toggled. Nothing
happens on the upstroke.

KeyTrigger
The KeyTrigger activates a Trigger In when the keyboard event occurs. By default, the keyboard
event is defined as the key downstroke. However, with the optional <up/> tag within the XML, the
KeyTrigger can map to the upstroke. By defining both the upstroke and downstroke to the same
key, triggers can be sent on each end of a keypress.

Element Type Description
position POSITION Position of the top left corner.
size SIZE Size in pixels.
label TEXT Label text.
color COLOR Sets the component’s active color.
keys XML XML describing the key mapping from keyboard events to

HDL endpoints. See the table below for more details.

The following table describes the nodes of the <key> XML element within the component de-
scription. This mapping is used to associate a keyboard event with an HDL endpoint.

Element Type Description
KeyButton XML Defines a KeyButton behavior on the provided keycode to

the associated Wire In endpoint. The “keycode” property
defines the mapped key.

KeyToggle XML Defines a KeyTrigger behavior on the provided keycode to
the associated Wire In endpoint. The “keycode” property
defines the mapped key.

KeyTrigger XML Defines a KeyTrigger behavior on the provided keycode to
the associated Trigger In endpoint. The “keycode” property
defines the mapped key.

The table below lists the recognized keycodes.

KEY_A ... KEY_Z KEY_UP KEY_NUMPAD0 ... KEY_NUMPAD9
KEY_0 ... KEY_9 KEY_DOWN KEY_NUMLOCK
KEY_F1 ... KEY_F24 KEY_LEFT KEY_NUMPADDIV
KEY_BACK KEY_RIGHT KEY_NUMPADMULT
KEY_TAB KEY_INSERT KEY_NUMPADADD
KEY_RETURN KEY_DELETE KEY_NUMPADSUB
KEY_ESCAPE KEY_END KEY_NUMPADDECIMAL
KEY_SPACE KEY_HOME
KEY_SHIFT KEY_PGUP
KEY_CONTROL KEY_PGDOWN

63

FrontPanel User’s Manual

www.opalkelly.com

XML Example:
<object class=”okKeyPanel”>
 <label>Key Panel A</label>
 <color>#b0f0b0</color>
 <position>5,260</position>
 <size>100,55</size>
 <keys>
 <KeyButton keycode=”KEY_UP”>
 <endpoint>0x00</endpoint><bit>0</bit>
 </KeyButton>
 <KeyToggle keycode=”KEY_DOWN”>
 <endpoint>0x00</endpoint><bit>1</bit>
 </KeyButton>
 <KeyTrigger keycode=”KEY_A”>
 <endpoint>0x40</endpoint><bit>1</bit>
 </KeyTrigger>
 <KeyTrigger keycode=”KEY_A”>
 <up/>
 <endpoint>0x40</endpoint><bit>1</bit>
 </KeyTrigger>
 </keys>
</object>

64

FrontPanel User’s Manual

www.opalkelly.com

65

FrontPanel User’s Manual

www.opalkelly.com

FrontPanel Host Simulation

Hardware simulation is a valuable tool used to reduce design cycles and quickly debug a hard-
ware design. While debug outputs to real instruments (logic analyzers and oscilloscopes) as well
as the virtual instruments supported by FrontPanel can help in the controllability and observability
of a design, nothing can match the flexibility offered by simulation.

Unfortunately, full system simulation is often difficult to attain. Simulation models of external
hardware are often not available. More importantly, integration of the hardware simulation with
software can be difficult.

The FrontPanel API provides a simple, capable, and convenient communication interface be-
tween the hardware design residing within the FPGA and a user application running on a PC
host. The Opal Kelly FrontPanel Host Simulation Libraries allows simulation of this PC host
within a hardware simulation.

System Simulation Model
The block diagram below illustrates the system simulation model for the Host Simulation Librar-
ies. The FPGA design encompasses the user’s HDL design as well as the okHostInterface
module and endpoint modules (such as okWireIn and okPipeOut). In a live system, the ok-
HostInterface communicates with the USB microcontroller on the FPGA board which, in turn,
communicates with the PC and software API. In the simulation system, the okHostInterface is
replaced by a simulation model which communicates with a simulation model for the Host. The
user’s simulation test fixture executes host directives as if they were software API calls.

66

FrontPanel User’s Manual

www.opalkelly.com

okTriggerIn

okWireOut

okHostInterface

User’s HDL

okWireIn

okPipeIn

PC Host

ModelSim Host

Complete FPGA Design

The goal of this type of simulation model is to simulate the complete FPGA design without hav-
ing to make changes specific to the simulation model. In reality, many designs will require some
modification, but in this case the host can be simulated as realistically as possible.

Simulation Requirements
The Opal Kelly FrontPanel Host Simulation Library has been precompiled for use with ModelSim
XE III 6.1e Starter Edition (the version packaged with the Xilinx ISE tools -- conversion to differ-
ent versions of ModelSim can be done using the “refresh” command within ModelSim) as well as
Aldec ActiveHDL 7.1 and higher.

Configuring ActiveHDL
Launch ActiveHDL 7.1 and follow the steps below:

1. Launch the Library Manager (View → Library Manager).
2. On the top menu, select Library Attach Library.

3. Navigate to the Opal Kelly ActiveHDL simulation library in the FrontPanel installation di-
rectory and select the “lib” file to install the library. (okFPsim _ ver is the Verilog library.
okFPsim is the VHDL library.)

4. Repeat Step 3 for the other library.

Configuring ModelSim
A small change to the ModelSim configuration file (modelsim.ini) will allow you to access the
Host Simulation Library from within any project and therefore not have to copy the library to each
project’s simulation directory. The configuration file is (by default) located at the following path:

 C:\Modeltech_xe_starter\modelsim.ini

Open this file in a text editor. The file is read-only, so you may want to make a copy of the file
and edit the copy. Add the following link to the “Verilog Section” (note that this should all be on a
single line):

okFPsim_ver = c:/Program Files/Opal Kelly/FrontPanel/FrontPanelHDL/ModelSimXE61e/okFPsim_ver
okFPsim = c:/Program Files/Opal Kelly/FrontPanel/FrontPanelHDL/ModelSimXE61e/okFPsim

Whenever ModelSim is started, it will include this library and the models should be accessible
from your simulation project.

67

FrontPanel User’s Manual

www.opalkelly.com

Adding Host Simulation to a Test Fixture
A test fixture which simulates the FrontPanel Host requires the following three components:

1. Instantiation of the device under test (DUT). This is required in any test fixture.

2. A behavioral block which calls the Host Simulation Library to mimic the FrontPanel API.

3. Include okHostCalls.v. This file contains the tasks which simulate the various host API
functions.

The last two items are specific to FrontPanel Host Simulation. The table below lists the
FrontPanel API calls that are available within the Host Simulation Library. In most cases, the
parameters are identical to the corresponding FrontPanel API calls.

SetWireIns GetWireOutValue
ActivateTriggerIn IsTriggered
WriteToPipeIn ReadFromPipeOut
WriteToBlockPipeIn ReadFromBlockPipeOut
UpdateWireIns UpdateWireOuts
UpdateTriggerOuts FrontPanelReset

Example Test Fixtures
The Simulation subdirectory in the FrontPanel installation location contains sample test fixture
templates for simulation. They show the general flow and structure of a test fixture that includes
the FrontPanel host interface simulation model. These templates should be the starting point for
your own simulation test fixtures.

Verilog
For Verilog simulation, dut _ tf.v (your device-under-test test fixture) is used together with
okHostCalls.v. The latter includes the necessary code to communicate with the host interface
model.

VHDL
For VHDL simulation, a corresponding okHostCalls is not necessary. Instead, these routines
are actually included in dut _ tf.vhd. Note that dut _ tf.vhd is significantly longer than
dut _ tf.v.

Reset
In a live FPGA design, the FPGA automatically performs a reset of all logic within the fabric after
configuration. This assures that the entire design start in a known state which is established by
the design.

In a simulation environment, this reset signal is not always simulated and some signals may start
in an unknown state. The FrontPanelReset call will reset the host interface functions and as-
sure that the simulation starts off in a known state. It is therefore recommended that your simula-
tion issue a call Reset at the beginning of the simulation.

Simulating Pipes
Pipe transfer calls utilize global array variables in the test fixture to store the data that will be
transmitted or received. These global variables must be declared within the user’s testbench if

68

FrontPanel User’s Manual

www.opalkelly.com

any pipe functionality is to be simulated. In addition, the three parameters BlockDelayStates,
ReadyCheckDelay, and PostReadyDelay determine how many clock periods exist between
various pipe functions to help simulate possible delays that may occur in actual hardware.
BlockDelayStates adds delay between transfers of blocks of data, ReadyCheckDelay
simulates a lag in clocks before a Block Pipe module checks for a valid EP_READY signal, and
PostReadyDelay simulates a delay after EP_READY is asserted before the next block of data
is piped.

An example setup for these requirements is shown here:

parameter BlockDelayStates = 5; // REQUIRED: # of clocks between blocks of pipe data
parameter ReadyCheckDelay = 5; // REQUIRED: # of clocks before block transfer before
 // host interface checks for ready (0-255)
parameter PostReadyDelay = 5; // REQUIRED: # of clocks after ready is asserted and
 // check that the block transfer begins (0-255)
parameter pipeInSize = 16383; // REQUIRED: byte (must be even) length of default
 // PipeIn; Integer 0-2^32
parameter pipeOutSize = 16383; // REQUIRED: byte (must be even) length of default
 // PipeOut; Integer 0-2^32
reg [7:0] pipeIn [0:(pipeInSize-1)];
reg [7:0] pipeOut [0:(pipeOutSize-1)];

After a call to ReadFromPipeOut or ReadFromBlockPipeOut the received data will be in the
byte-wide register array pipeOut, arranged as it would be after a call to the C++ method. Simi-
larly, before a call to WriteToPipeIn or WriteToBlockPipeIn the transmitted data should be
setup in the byte-wide register array pipeIn. More pipe data arrays may be added as needed
by copying and modifying the default pipe functions.

Simulation in Aldec ActiveHDL
The process of setting up the simulation test fixture and calling host interface functions is identi-
cal for ActiveHDL. The only differences are limited to the configuration of the tool (see above)
and in the setup of the design workspace.

Design Workspace Setup
Follow the steps below to properly setup your ActiveHDL design workspace for use with the
FrontPanel HDL Simulation libraries.

1. Create an empty design in ActiveHDL. The design name and location are not important.

2. In the Design Browser, double-click on Add New File then Add Existing File, then
select the file you want to add to the simulation. First add the Xilinx glbl.v file from the
Xilnx ISE installation directory in \verilog\src.

3. From the top menu, select Design → Settings. Then select General → Verilog. Add
okfpsim _ ver and ovi _ unisim to the Verilog libraries.

4. In the Design Browser, click on one of the Verilog files and select Compile All with File
Reorder.

5. Expand the local library in the Design Browser (it will have your design name). Select
your top-level source and glbl. Right-click on one of them and select Set as Top-Lev-
el. This will create a multiple top-level.

6. From the top menu, select Simulation → Initialize Simulation. You are now free to
create a new waveform and continue with your simulations.

69

FrontPanel User’s Manual

www.opalkelly.com

Example - First
Two simulation examples are included with FrontPanel to help get you started. The first example
runs a very simple simulation on the “First” project that we included in the Getting Started guide.
The second example is an in-depth simulation which exercises more of the Host Simulation
Library.

NOTE: Both samples are provided only for ModelSim, but should translate to ActiveHDL in a
straightforward manner.

Required Files
The following table lists the files required for the “First” simulation along with a brief description.

Filename Description
First.v This is the unmodified source file from the First project.
Simulation/first.do This files contains the ModelSim commands to setup, compile,

and run the simulation.
Simulation/First_tf.v This is the Verilog test fixture for the First simulation.
Simulation/okHostCalls.v This file contains the Host Simulation Library calls. This has

been copied from the installation directory.

The file okHostCalls.v has been copied from the FrontPanel installation directory to the simula-
tion directory. By default, it is installed at the following location:

 C:\Program Files\Opal Kelly\FrontPanel\FrontPanelHDL\Simulation

Perform the Simulation
For this example, the simulation is performed from a series of commands already setup in the
first.do file. To run the simulation, perform these steps:

1. Start ModelSim.

2. At the command prompt, change your working directory to the First/Simulation directory:

 cd c:/mysimulations/First/

3. Perform the simulation by entering (at the command prompt):

 do first.do

The simulation should run to completion. By selecting the “Wave” window, you should see some-
thing like this (assuming ModelSim as the simulator):

70

FrontPanel User’s Manual

www.opalkelly.com

Analyzing the Results
The important simulus from First_tf.v comes from the following Verilog statements:

for (k=0; k<5; k=k+1) begin
 // Set the two ADDER inputs to random 16-bit values.
 r1 = $random % 65536;
 r2 = $random % 65536;
 exp = r1 + r2;
 SetWireIns(8’h01, r1, 16’hffff); // FRONTPANEL API
 SetWireIns(8’h02, r2, 16’hffff); // FRONTPANEL API
 UpdateWireIns; // FRONTPANEL API

 // The ADDER result will be ready. UpdateWireOuts to get it.
 UpdateWireOuts; // FRONTPANEL API
 sum = GetWireOutValue(8’h21); // FRONTPANEL API
 if (exp == sum)
 $display(“SUCCESS -- Expected: 0x%04h Received: 0x%04h”, exp, sum);
 else
 $display(“FAILURE -- Expected: 0x%04h Received: 0x%04h”, exp, sum);
end

This code is iterated 5 times to simulate 5 different WireIn inputs. Each time, two random 16-
bit numbers are generated and sent as WireIn 0x01 and WireIn 0x02. The expected result (the
unsigned sum of the two numbers) is also computed. At approximately time 0-ps, these numbers
are generated. The UpdateWireIns() call is performed but the inputs do not propagate to the
design until time 780-ns (as seen at the first cursor).

The design immediately places the result (0x93A5) on WireOut 0x21. This value is not read out
by the simulation until UpdateWireOuts() has completed at time 1670-ns (the second cursor).

The third cursor shows when the second iteration of inputs have propagated to the design after
the second UpdateWireIns() call.

71

FrontPanel User’s Manual

www.opalkelly.com

Simulation Accuracy
Back-to-back wire updates such as the ones seen in this simulation do not, in fact occur this
quickly. The bandwidth constraints on USB and other operating system issues will cause them
to happen much slower. In the interest of simulation speed, however, we have accelerated the
response time of some of the host simulation actions. The user may, at his or her discretion,
place additional delays within the simulation in order to better model the speed of the real host
interface. In most cases, this will not be necessary

Example - DES Tester
A more thorough example of the capabilities of the Host Simulation Library, including PipeIn and
PipeOut transfers, is included with the DES sample. A step-by-step review of the setup and ex-
ecution of this sample has been included in Part IV of our online FrontPanel tutorial.

72

FrontPanel User’s Manual

www.opalkelly.com

73

FrontPanel User’s Manual

www.opalkelly.com

Appendix A: A Simple Example

This basic example quickly introduces the basic concepts of the
Wire In and Wire Out endpoints by linking real and virtual pushbut-
tons to real and virtual LEDs. The XML and HDL descriptions are
short and concise, making this example a great place to start with
FrontPanel.

This sample is designed to work with the XEM3001.

The First FrontPanel sample contains the following files:

File Description
First.xfp FrontPanel profile (text-readable XML).
first.bit Xilinx configuration file produced from ISE.
Verilog/First.ise Xilinx ISE Navigator project file.
Verilog/First.v Verilog description of the project’s toplevel.
Verilog/First.ucf Xilinx constraints file containing pin location constraints.

When the profile is loaded into FrontPanel, it creates a user interface that looks like this:

74

FrontPanel User’s Manual

www.opalkelly.com

Toplevel Description
The file First.v contains the Verilog description of the project, including all pins which are physi-
cally connected to the FPGA. It’s entire contents are listed below:

module toplevel(
 input wire [7:0] hi_in,
 input wire [1:0] hi_out,
 inout wire [15:0] hi_inout,

 output wire [7:0] led,
 input wire [3:0] button
);

// Target interface bus:
wire ti_clk;
wire [30:0] ok1;
wire [16:0] ok2;

// Endpoint connections:
wire [15:0] ep00wire;
wire [15:0] ep20wire;

assign led = ~ep00wire;
assign ep20wire = {12’b0000, ~button};

// Instantiate the okHostInterface and connect endpoints to
// the target interface.
okHostInterface okHI(
 .hi_in(hi_in), .hi_out(hi_out), .hi_inout(hi_inout),
 .ti_clk(ti_clk), .ok1(ok1), .ok2(ok2));

okWireIn ep00 (
 .ok1(ok1), .ok2(ok2),
 .ep_addr(8’h00), .ep_dataout(ep00wire));

okWireOut ep20 (
 .ok1(ok1), .ok2(ok2),
 .ep_addr(8’h20), .ep_datain(ep20wire));

endmodule

Listed inside the module definition are several wires. Most of these are for the FrontPanel host
interface. The two other busses, LED[7:0] and BUTTON[3:0] connect to the LEDs and pushbut-
tons on the XEM3001. Their specific pin locations are constrained in First.ucf.

Target Logic
The logic description for this example is very simple and only consists of two lines of HDL con-
necting the Wire In endpoint to the physical LEDs and the Wire Out endpoint to the physical
pushbuttons:

assign led = ~ep00wire;
assign ep20wire = {12’b0000, ~button};

The LEDs are attached to endpoint 0x00 and the pushbuttons are attached to endpoint 0x20.

75

FrontPanel User’s Manual

www.opalkelly.com

FrontPanel Interface Modules
This design contains three FrontPanel interface modules: okHostInterface, okWireIn, and okWir-
eOut. Their instantiation is pretty straightforward. We have chosen to call the endpoint wires
ep00wire and ep20wire for clarity.

FrontPanel XML Description
The user’s interface shown at the beginning of this example is described in XML and shown
below. Only one instance of the okToggleButton and one instance of the okLED are shown for
brevity. The others instances are similar with the exception of their position tag and endpoint bit.

<?xml version=”1.0” encoding=”ISO-8859-1”?>
<!--
First FrontPanel Example
Copyright (c) 2004, Opal Kelly Incorporated
-->

<resource version=”2.3.0.1”>
<object class=”okPanel” name=”panel1”>
 <title>First FrontPanel Example</title>
 <size>180,70</size>

 <object class=”okToggleButton”>
 <label>1</label>
 <position>10,10</position>
 <size>20,20</size>
 <endpoint>0x00</endpoint>
 <bit>0</bit>
 </object>

 ... other okToggleButton objects removed ...

 <!-- LEDs -->
 <object class=”okLED”>
 <position>48,40</position>
 <size>25,25</size>
 <label>1</label>
 <style>SQUARE</style>
 <color>#00ff00</color>
 <endpoint>0x20</endpoint>
 <bit>0</bit>
 </object>

 ... other okLED objects removed ...

</object>
</resource>

Each FrontPanel XML description must contain the <?xml> tag shown at the top as well as the
<resource ...> and </resource> tags as they are required by the FrontPanel XML parser.

okPanel
The first object specified is the okPanel object which has a “name” property with value “panel1”.
FrontPanel looks for these properties when loading a profile. They must be sequenced panel1,
panel2, and so on. The okPanel object also has two child nodes serving as parameters for the
okPanel as listed in the table below:

76

FrontPanel User’s Manual

www.opalkelly.com

Node Name Description
title This is the title of the dialog window created when you view this panel.
size The size of the dialog, in pixels: Width,Height.

The okPanel object also has two child nodes which are FrontPanel components, okToggleButton
and okLED. Because they are children of the okPanel object, they will appear on this particular
panel.

okToggleButton
The toggle button is described with child nodes as indicated in the table below.

Node Name Description
label This is a label that will be placed inside the toggle button.
position The position of the top-left corner of the component, in pixels: X,Y.
size The size of the component, in pixels: Width,Height.
endpoint The endpoint address (expressed in hexadecimal) for this toggle button’s

Wire In endpoint.
bit The specific bit on the endpoint address that this toggle button controls.

okLED
The LED is described with child nodes as indicated in the table below.

Node Name Description
label This is a label that will be placed below the LED.
position The position of the top-left corner of the component, in pixels: X,Y.
size The size of the component, in pixels, specified as Width,Height. This size

includes the LED and its label.
style LED style: SQUARE or ROUND
color The 24-bit color of the LED as #RRGGBB.
endpoint The endpoint address (expressed in hexadecimal) for this LED’s Wire

Out endpoint.
bit The specific bit on the endpoint address that this LED monitors.

Other Samples
The standard FrontPanel installation includes other samples including samples which illustrate
use of the C++ and Python programmer’s interfaces. A summary of these samples is shown
below. They are placed in the installation directory in the Samples folder.

77

FrontPanel User’s Manual

www.opalkelly.com

Sample FrontPanel C++ Python Java Description

First 
A very simple FrontPanel-only project to get
started quickly.

Counters   

Displays two independent counters with
controls for each. Since it is implemented
in FrontPanel, C++, and Python, it is a good
start for those wanting to learn the APIs.

Controls 
This sample is a showcase of the FrontPanel
components available.

PipeTest 
Connects to PipeIn and PipeOut modules on
the FPGA to test transfer rates. Block sizes
can be set by the user.

DES    
A command-line sample based on the Open-
Cores.org triple-DES encryption and decryp-
tion core.

78

FrontPanel User’s Manual

www.opalkelly.com

79

FrontPanel User’s Manual

www.opalkelly.com

Appendix B: The Counters Sample

This sample is a bit more complicated than the simple example
and showcases a few more features of FrontPanel and the
XEM3001.

This sample is designed to work with the XEM3001.

The Counters sample is a bit more complicated than the previous example. It includes a few
more FrontPanel components and also adds a few Trigger endpoints. More importantly, though,
it adds more hardware in the form of HDL so you can see how FrontPanel integrates with HDL in
a slightly more complicated setup.

The FrontPanel virtual interface for this sample is shown below:

Hardware Description
The hardware for the Counters sample has two counters, the okHostInterface, a single Wire In
endpoint, three Wire Out endpoints, and a Trigger In endpoint. The hardware also routes to the
LEDs on the XEM3001.

80

FrontPanel User’s Manual

www.opalkelly.com

Counter #1
The first counter is an 8-bit up counter with enable, synchronous reset, and disable. The enable
signal is generated by a separate 24-bit counter to make the count progression slower. The Ver-
ilog HDL for this counter and its clock divider counter is shown here:

always @(posedge clk1) begin
 div1 <= div1 - 1;
 if (div1 == 24’h000000) begin
 div1 <= 24’h400000;
 clk1div <= 1’b1;
 end else begin
 clk1div <= 1’b0;
 end

 if (clk1div == 1’b1) begin
 if (reset1 == 1’b1)
 count1 <= 8’h00;
 else if (disable1 == 1’b0)
 count1 <= count1 + 1;
 end
end

From the description, we gather that when RESET1 is asserted, the counter will hold the value
0x00. When DISABLE1 is asserted, the counter holds its current value. Otherwise, the counter
will increment each time the clock divider counter expires.

Note that this counter operates on CLK1 which is mapped to LCLK1 on the PLL.

Counter #2
The second counter operates on CLK2 which is mapped to LCLK2 on the PLL. Using the PLL
Configuration Dialog, we will be able to observe the effects of changing the PLL frequencies on
the two counters.

The Verilog HDL for this counter and its own divider is listed below. This counter will count up
when UP2 is asserted, count down when DOWN2 is asserted, and automatically count up when
AUTOCOUNT2 is asserted. Note that UP2 and DOWN2 must be asserted for exactly one CLK2
cycle for the counter to count only one. This is why we have the Trigger endpoints.

always @(posedge clk2) begin
 div2 <= div2 - 1;
 if (div2 == 24’h000000) begin
 div2 <= 24’h100000;
 clk2div <= 1’b1;
 end else begin
 clk2div <= 1’b0;
 end

 if (reset2 == 1’b1)
 count2 <= 8’h00;
 else if (up2 == 1’b1)
 count2 <= count2 + 1;
 else if (down2 == 1’b1)
 count2 <= count2 - 1;
 else if ((autocount2 == 1’b1) && (clk2div == 1’b1))
 count2 <= count2 + 1;
end

81

FrontPanel User’s Manual

www.opalkelly.com

Endpoints
This sample uses several endpoints to provide controllable inputs to the hardware and observ-
able outputs to FrontPanel. To reduce the number of endpoints, we have chosen to share them
among the counters.

Wire In (0x00)
The only Wire In endpoint is used to carry the RESET1, DISABLE1, and AUTOCOUNT2 signals.
These are wires because we want them to have a static state rather than one-shot signals.

Signal Bit(s) Description
RESET1 0 When asserted, Counter #1 holds the value 0x00 and does not

count.
DISABLE1 1 When asserted, Counter #2 holds its value and does not count.
AUTOCOUNT2 2 Configures counter #2 to autocount.
Unused 15:3

Trigger In (0x40)
The only Trigger In endpoint is used for the Counter #2 inputs. These are triggers because we
want single events (one-shots) to occur, such as a count-up event.

Note that RESET2 behaves the same as RESET1 but we want to have RESET2 behave as a
one-shot event so that the user cannot hold RESET2 asserted. Therefore, we attach this one to
a Trigger.

Signal Bit(s) Description
RESET2 0 When asserted, Counter #2 resets to 0x00 and does not count.
UP2 1 When asserted, Counter #2 counts up.
DOWN2 2 When asserted. Counter #2 counts down.
Unused 15:3

Wire Out (0x20, 0x21, and 0x22)
These wires provide observables for FrontPanel. They are connected as follows:

Endpoint Signal Description
Wire Out 0x20 COUNT1[7:0] Counter #1 value.
Wire Out 0x21 COUNT2[7:0] Counter #2 value.
Wire Out 0x22 BUTTON[3:0] The lower four bits of this wire bundle contain the status

of the on-board pushbuttons. If a button is pressed, the
corresponding wire will be asserted.

82

FrontPanel User’s Manual

www.opalkelly.com

FrontPanel Components
The user interface for the Counters sample includes two panels. The first panel contains five but-
tons, four hex displays, eight LEDs, and a check box. There are also two cosmetic components
called okStaticBox which are used to group the components visually. The second panel simply
contains four LEDs used to display the state of the pushbuttons.

Panel 1: Counters Example
The active FrontPanel components are listed below with their corresponding endpoints:

Component Label Endpoint Bit
okPushbutton Reset 0x00 0
okPushbutton Disable 0x00 1
okTriggerButton - Reset - 0x40 0
okTriggerButton - Up - 0x40 1
okTriggerButton - Down - 0x40 2
okToggleCheck Autocount. 0x00 2
okHex x[7:4] 0x20 4
okHex x[3:0] 0x20 0
okHex y[7:4] 0x21 4
okHex y[3:0] 0x21 0
okLED 7 0x20 7
okLED 6...1 0x20 6...1
okLED 0 0x20 0

Note that the okLED and two of the okHex components share endpoint 0x20. FrontPanel allows
this and will update both components when Wire Out endpoints change. It is also possible to
map two components to input endpoints.

Panel 2: Pushbuttons
The second panel is not automatically opened when the Conters XFP file is loaded. You can
open it by pressing the number `2’ on your keyboard or navigating to

 View → Pushbuttons

at the top of the FrontPanel window. This displays a small window with the following compo-
nents:

Component Label Endpoint Bit/Mask
okLED 3 0x22 3
okLED 2 0x22 2
okLED 1 0x22 1
okLED 0 0x22 0

Quick Reference - Endpoints

okPipeIn
Signal Direction Description
EP_DATAOUT[15:0] Output Pipe data output.
EP_WRITE Output Active high write signal. Data should be captured

when this signal is asserted.
okPipeIn pipeIn9C (.ok1(ok1), .ok2(ok2),
 .ep_addr(8’h9c), .ep_dataout(pipeData), .ep_write(pipeWrite));

pipeIn9C : okPipeIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”9C”, ep_dataout => pipeData, ep_write => pipeWrite);

okBufferedPipeIn
Signal Direction Description
EP_CLK Input Endpoint clock.
EP_DATAOUT[15:0] Output Pipe data output.
EP_READ Output When asserted, advances the read pointer to the next

FIFO word.
EP_FULL Output Asserted when the endpoint FIFO is full.
EP_EMPTY Output Asserted when the endpoint FIFO is empty.
EP_STATUS[3:0] Output Indicates the ‘fullness’ of the FIFO in 16 levels (1/16-

full, 1/8-full, and so on.
okBufferedPipeIn pipeOut9C (.ok1(ok1), .ok2(ok2),
 .ep_addr(8’h9c), .ep_clk(clk2), .ep_dataout(pipeData), .ep_read(pipeRead),
 .ep_full(pipeFull), .ep_empty(pipeEmpty), .ep_status(pipeStatus));

pipeOutA3 : okBufferedPipeIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”9c”, ep_clk => clk2, ep_dataout => pipeData, ep_read => pipeRead,
 ep_full => pipeFull, ep_empty => pipeEmpty, ep_status => pipeStatus);

okWireOut
Signal Direction Description
EP_DATAIN[15:0] Input Wire values input. (to be sent to host)
okWireOut wireOut21 (.ok1(ok1), .ok2(ok2),
 .ep_addr(8’h21), .ep_datain(ep21data));

wireOut21 : okWireOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”21”, ep_datain => ep21data);

okPipeOut
Signal Direction Description
EP_DATAIN[15:0] Input Pipe data input.
EP_READ Output Active high read signal. Data must be provided in the

cycle following as assertion of this signal.
okPipeOut pipeOutA3 (.ok1(ok1), .ok2(ok2),
 .ep_addr(8’ha3), .ep_datain(pipeData), .ep_read(pipeRead));

pipeOutA3 : okPipeOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”A3”, ep_datain => pipeData, ep_read => pipeRead);

okBufferedPipeOut
Signal Direction Description
EP_CLK Input Endpoint clock.
EP_DATAIN[15:0] Input Pipe data input.
EP_WRITE Input When asserted, writes the data to the FIFO and

advances to the next FIFO word.
EP_FULL Output Asserted when the endpoint FIFO is full.
EP_EMPTY Output Asserted when the endpoint FIFO is empty.
EP_STATUS[3:0] Output Indicates the ‘fullness’ of the FIFO in 16 levels (1/16-

full, 1/8-full, and so on.
okBufferedPipeOut pipeOutA3 (.ok1(ok1), .ok2(ok2),
 .ep_clk(clk2), .ep_addr(8’ha3), .ep_datain(pipeData), .ep_write(pipeWrite),
 .ep_full(pipeFull), .ep_empty(pipeEmpty), .ep_status(pipeStatus));

pipeOutA3 : okBufferedPipeOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”A3”, ep_clk => clk2, ep_datain => pipeData,
 ep_write => pipeWrite, ep_full => pipeFull, ep_empty => pipeEmpty,
 ep_status => pipeStatus);

okWireIn
Signal Direction Description
EP_DATAOUT[15:0] Output Wire values output. (sent from host)
okWireIn wireOut03 (.ok1(ok1), .ok2(ok2),
 .ep_addr(8’h03), .ep_dataout(ep03data));

wireOut03 : okWireIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”03”, ep_dataout => ep03data);

okTriggerOut
Signal Direction Description
EP_CLK Input Clock to which the trigger is synchronized.
EP_TRIGGER[15:0] Input Independent triggers to host.
okTriggerOut trigOut6A (.ok1(ok1), .ok2(ok2),
 .ep_clk(clk2), .ep_addr(8’h6a), .ep_trigger(ep6Atrig));

trigOut6A : okTriggerOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”6a”, ep_clk => clk2, ep_trigger => ep6Atrig);

okTriggerIn
Signal Direction Description
EP_CLK Input Clock to which the trigger should synchronize.
EP_TRIGGER[15:0] Output Independent triggers from host.
okTriggerIn trigIn53 (.ok1(ok1), .ok2(ok2),
 .ep_clk(clk2), .ep_addr(8’h53), .ep_trigger(ep53trig));

trigIn53 : okTriggerIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”53”, ep_clk => clk2, ep_trigger => ep53trig);

okHostInterface
Signal Direction Description
HI_IN[7:0] Input Host interface inputs.
HI_OUT[1:0] Output Host interface outputs.
HI_INOUT[15:0] In/Out Bidirectional host interface signals.
TI_CLK Output Buffered host interface clock signal.
OK1[30:0] Out Control signals to endpoint modules.
OK2[16:0] In Control signals from endpoint modules.
okHostInterface hostIF (.hi_in(hi_in), .hi_out(hi_out), .hi_inout(hi_inout),
 .ti_clk(ticlk), .ok1(ok1), .ok2(ok2));

hostIF : okHostInterface port map (hi_in => hi_in,
 hi_out => hi_out, hi_inout => hi_inout,
 ti_clk => ticlk, ok1 => ok1, ok2 => ok2);

okBTPipeIn
Signal Direction Description
EP_DATAOUT[15:0] Output Pipe data output.
EP_WRITE Output Active high write signal. Data should be captured

when this signal is asserted.
EP_BLOCKSTROBE Output Active-high block strobe.
EP_READY Input Active-high ready signal.
okBTPipeIn pipeIn9C (.ok1(ok1), .ok2(ok2),
 .ep_addr(8’h9c), .ep_dataout(pipeData), .ep_write(pipeWrite),
 .ep_blockstrobe(pipeStrobe), .ep_ready(pipeReady));

pipeIn9C : okBTPipeIn port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”9C”, ep_dataout => pipeData, ep_write => pipeWrite,
 ep_blockstrobe => pipeStrobe, ep_ready => pipeReady);

okBTPipeOut
Signal Direction Description
EP_DATAIN[15:0] Input Pipe data input.
EP_READ Output Active high read signal. Data must be provided in

the cycle following as assertion of this signal.
EP_BLOCKSTROBE Output Active-high block strobe.
EP_READY Input Active-high ready signal.
okBTPipeOut pipeOutA3 (.ok1(ok1), .ok2(ok2),
 .ep_addr(8’ha3), .ep_datain(pipeData), .ep_read(pipeRead),
 .ep_blockstrobe(pipeStrobe), .ep_ready(pipeReady));

pipeOutA3 : okBTPipeOut port map (ok1 => ok1, ok2 => ok2,
 ep_addr => x”A3”, ep_datain => pipeData, ep_read => pipeRead
 ep_blockstrobe => pipeStrobe, ep_ready => pipeReady);

Quick Reference - Components
okPushbutton Wire In
<object class=”okPushbutton”>
 <label>Disable</label>
 <position>90,25</position>
 <size>60,20</size>
 <endpoint>0x00</endpoint>
 <bit>1</bit>
 <tooltip>Momentarily disable counter #1</tooltip>
</object>

okToggleButton Wire In
<object class=”okToggleButton”>
 <label>1</label>
 <position>10,10</position>
 <size>20,20</size>
 <endpoint>0x00</endpoint>
 <bit>0</bit>
</object>

okToggleCheck Wire In
<object class=”okToggleCheck”>
 <label>Autocount.</label>
 <position>20,135</position>
 <endpoint>0x00</endpoint>
 <bit>2</bit>
 <tooltip>Enable autocount.</tooltip>
</object>

okDigitEntry Wire In
<object class=”okDigitEntry”>
 <position>5,215</position>
 <size>200,30</size>
 <label>Divider</label>
 <tooltip>Sets the integer divider.</tooltip>
 <minvalue>0</minvalue>
 <maxvalue>16777215</maxvalue>
 <value>49837</value>
 <endpoint>0x03</endpoint>
 <bit>0</bit>
</object>

okSlider Wire In
<object class=”okSlider”>
 <position>310,5</position>
 <size>25,100</size>
 <label>Hi</label>
 <tooltip>4-bit vertical slider.</tooltip>
 <style>VERTICAL|SHOWLABELS</style>
 <minvalue>0</minvalue>
 <maxvalue>15</maxvalue>
 <value>3</value>
</object>

okLED Wire Out
<object class=”okLED”>
 <position>135,50</position>
 <size>25,25</size>
 <label>1</label>
 <style>SQUARE</style>
 <color>#00ff00</color>
 <endpoint>0x20</endpoint>
 <bit>1</bit>
</object>

okHex Wire Out
<object class=”okHex”>
 <label>x[3:0]</label>
 <position>217,22</position>
 <size>35,50</size>
 <endpoint>0x20</endpoint>
 <bit>0</bit>
 <tooltip>Counter #1 (low nibble)</tooltip>
</object>

okTriggerButton Trigger In
<object class=”okTriggerButton”>
 <label>- Reset -</label>
 <position>20,110</position>
 <size>60,20</size>
 <endpoint>0x40</endpoint>
 <bit>0</bit>
 <tooltip>Reset Counter #2</tooltip>
</object>

okTriggerSound Trigger Out
<object class=”okTriggerSound”>
 <endpoint>0x63</endpoint>
 <bit>3</bit>
 <label>Transfer complete trigger.</label>
 <soundfile>c:/Windows/Media/chimes.wav</soundfile>
</object>

okDigitDisplay Wire Out
<object class=”okDigitDisplay”>
 <position>5,215</position>
 <size>200,30</size>
 <maxvalue>65535</maxvalue>
 <endpoint>0x23</endpoint>
 <bit>0</bit>
</object>

okCombobox Wire In
<object class=”okCombobox”>
 <position>180,160</position>
 <size>100,-1</size>
 <options>
 <item value=”0”>Test mode</item>
 <item value=”1”>Standard mode</item>
 <item value=”2”>Block floating point mode</item>
 </options>
 <endpoint>0x01</endpoint>
 <bit>1</bit>
</object>

okKeyPanel Wire In / Trigger In
<object class=”okKeyPanel”>
 <label>Key Panel A</label>
 <color>#b0f0b0</color>
 <position>5,260</position>
 <size>100,55</size>
 <keys>
 <KeyButton keycode=”KEY_UP”>
 <endpoint>0x00</endpoint><bit>0</bit>
 </KeyButton>
 <KeyToggle keycode=”KEY_DOWN”>
 <endpoint>0x00</endpoint><bit>1</bit>
 </KeyButton>
 <KeyTrigger keycode=”KEY_A”>
 <endpoint>0x40</endpoint><bit>1</bit>
 </KeyTrigger>
 <KeyTrigger keycode=”KEY_A”>
 <up/>
 <endpoint>0x40</endpoint><bit>1</bit>
 </KeyTrigger>
 </keys>
</object>

okGauge Wire Out
<object class=”okGauge”>
 <position>120,235</position>
 <size>150,15</size>
 <style>HORIZONTAL</style>
 <range>65535</range>
 <endpoint>0x33</endpoint>
 <bit>0</bit>
</object>

okTriggerLog Trigger Out
<object class=”okTriggerLog”>
 <position>5,290</position>
 <size>350,100</size>
 <trigger>
 <endpoint>0x60</endpoint><bit>1</bit>
 <message>Your laundry is done.</message>
 </trigger>
 <trigger>
 <endpoint>0x61</endpoint><bit>0</bit>
 <message>Elvis (the cat) has left the building.</message>
 </trigger>
</object>

okTriggerMessage Trigger Out
<object class=”okTriggerMessage”>
 <position>120,225</position>
 <size>220,20</size>
 <style>DOUBLE_BORDER|ALIGN_CENTER</style>
 <trigger>
 <endpoint>0x60</endpoint><bit>0</bit>
 <message>Test trigger has just gone off!</message>
 <background>#ff0000</background>
 <foreground>#ffffff</foreground>
 <delay>0.25</delay>
 </trigger>
 <trigger>
 <endpoint>0x60</endpoint><bit>1</bit>
 <message>Your laundry is done.</message>
 <background>#ffffff</background>
 <foreground>#cc0000</foreground>
 </trigger>
</object>

